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Synopsis

Motivation: Arterial Spin Labeling (ASL) cerebral blood flow (CBF) maps can be noisy, which can bias statistical results. Quality control (QC) by visual

inspection is subjective and time-consuming. Automated objective QC addresses these limitations, but previous methods lacked consistency across

datasets.

Goal(s): Develop a deep learning model (QEI-Net) to derive a robust quality evaluation index (QEI) for ASL CBF maps.

Approach: We trained QEI-Net on manually rated multi-protocol ASL datasets and compared QEI-Net with both manual ratings and the previous state-of-

the-art method.

Results: QEI-Net strongly correlated with manual ratings and outperformed the reference approach. This provides reliable and reproducible assessments

suitable for large-scale studies.

Impact: We propose QEI-Net, a deep learning based automated quality evaluation method for Arterial Spin Labeling (ASL) derived cerebral blood flow

images. QEI-Net can enable consistent and reproducible quality assessments and reduce the time burden and subjectivity in studies using ASL.

Introduction
Arterial Spin Labeling (ASL) MRI is widely used to measure cerebral blood flow (CBF)  for its non-invasiveness, non-radiation, and cost-effectiveness,

especially in large-scale research studies. However, ASL data is prone to noise and artifacts, necessitating robust quality control (QC). Traditional manual

QC methods are laborious and subject to bias. We previously proposed an automated quality evaluation index  (hereafter referred to as QEI ), which

was based on fitting three pre-determined features on a small set of data obtained with non-background suppressed 2D protocols. While QEI

showed reliable agreement with manual rating on average, there are disagreements in individual cases and a lack of generalization across different

imaging protocols. Here, we proposed QEI-Net, a deep learning (DL) model to derive a QEI (hereafter referred to as QEI ), which was expected to

provide more robust results. We also aimed to derive the region of artifacts in the image. Compared to QEI , the QEI  used a wide variety of scanning

protocols for training and used the whole image instead of predetermined features.

Method
The QEI  provides a numerical value between 0 and 1, where a higher value indicates better quality. We utilized N=150 ASL scans acquired with different

protocols on Siemens 3T scanner as detailed in Table 1 in Figure 1. Three raters with extensive experience working with ASL data visually rated each

dataset on a scale between 0 and 1 following some specific guidelines (see Figure 2A). Thereafter we divided the data randomly for training and

validation (N=120) and testing (N=30). To assess the robustness of the method, an independent fourth rater also rated the test set.

The preprocessing pipeline involved deriving CBF from the raw ASL data, registration to MNI space, down-sampling the images to 64x64x64 size, intensity

clipping to a range of [-80, 80], and scaling to [-1,1] range. The proposed network consists of four convolutional blocks, each with residual connections

(Figure 2B). Max pooling layers with a size of 2 were applied after the first three blocks. The network ends with three fully connected layers followed by a

sigmoid-activated output neuron. A dropout rate of 20% was applied after the fully connected layers. Training used the Adam optimizer (initial learning

rate 1e-4) with a batch size of 16, and early stopping (patience of 30 epochs) to prevent overfitting. Mean Squared Error (MSE) was used as the loss

function of this approach. The model was trained using a 5-fold cross-validation strategy and the five model-predictions were averaged to provide a

more robust prediction on the test set. Region of artifacts maps were empirically defined as the GradCAM  heatmap from the second convolutional

layer of the first convolutional block.

QEI  was validated and compared with QEI  by comparing them with the average manual ratings using Pearson correlation coefficient and the

squared errors as the performance indices. Next, we binarized the ratings as unacceptable and acceptable using a threshold of 0.25 and computed the

area under the receiver operating characteristic (ROC-AUC) curve of this classification. Additionally, we computed the Youden index as a recommended

threshold to be used to discard unacceptable quality CBF maps.

Results
The correlation between the ratings of raters 1 and 2 was 0.88, between 1 and 3 was 0.80 and between 2 and 3 was 0.79 (p<0.0001 in each case). Table 2

in Figure 1 presents a comparison between QEI and QEI . The correlation between QEI  with the average manual ratings was 0.92, which was

comparable to the inter-rater agreement and was significantly higher (p=0.02) than the correlation between QEI and the average rating (R=0.81).

QEI  correlated strongly with the fourth rater (R=0.93) whose rating was not used to train the model. Figure 3A shows scatter plots between the

individual ratings and the QEI  and QEI predictions. The squared errors obtained with QEI  were significantly higher (p=0.002) than QEI  (Figure

3B). Both methods provided comparable ROC-AUC values (Figure 3C). Figure 4 shows examples of artifactual images and the corresponding heatmaps

indicating the region of artifacts. Figure 5 shows examples where both QEI  and QEI provided similar values and agreed with the manual ratings (A

and B), as well as cases where QEI provided better agreement with the manual ratings than QEI  (C and D).

Discussion and Conclusion
QEI-Net demonstrated superior performance compared to the current state-of-the-art automated method  for predicting the quality of ASL CBF maps,

achieving lower SE metrics and better correlation with expert ratings. Future work will include training the model with larger datasets that will include

ASL from wider type of protocols and scanner vendors.
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Figures

Figure 1: Table 1 lists the different datasets utilized in this work. Table 2 compares the QEI  (Dolui et al. )
and QEI  (proposed) approaches on the test set.

Figure 2: A) Rating strategy guidelines provided to the expert raters to annotate the dataset. B) Overview of
the QEI-Net architecture which consists of different convolutional blocks followed by three fully connected
layers. The block in the right shows the detailed schematic of each convolutional block, which utilizes residual
connections. cb  denotes the corresponding convolutional block numbers.
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Figure 3A: Correlation between the ratings from individual expert raters and QEI (Dolui et al. ) and QEI
(proposed) predictions on the test set. Figure 3B and 3C: Performance comparison between QEI  and
QEI  on the test set. Figure 3B: Squared Error (SE) distribution for both methods. Figure 3C: Receiver
Operating Characteristic (ROC) curves for both models, including their corresponding Youden Index points.

Figure 4: ASL CBF maps contaminated with different types of artifacts and the corresponding heatmaps
generated from the QEI-Net showing the location of the artifacts.

Figure 5: Examples of CBF maps with the corresponding manual ratings and the automated quality evaluation
indices derived using QEI  (Dolui et al. ) and QEI  (proposed). (A) and (B) show examples where both
the automated methods agreed with manual ratings while (C) and (D) show examples where the QEI
provided better agreement than QEI .
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