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ART-Net: A deep learning framework for artifact source classification in ASL CBF Maps
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Impact

We propose ART-Net to identify sources of ASL artifacts, enabling actionable, source-aware quality control. This framework can enhance scan reliability,

reduce data loss in multi-site studies, and provide a generalizable template for artifact classification across imaging modalities.

Synopsis

Motivation: Arterial spin labeling (ASL) MRI quantifies cerebral blood flow (CBF) noninvasively but is susceptible to artifacts. Accurately identifying the
artifact source could enable immediate remediation during acquisition and early detection of protocol issues across sites, thereby increasing the
proportion of usable data and improving overall quality and reproducibility.

Goals: Develop a deep learning model (ART-Net) to identify the dominant artifact source in ASL CBF maps among four categories: motion, arterial
transit-time effects, fat-shift, and z-blurring.

Approach: We trained ART-Net on expert-annotated, multi-protocol ASL scans and evaluated against expert assessments on a held-out test set.

Results: ART-Net achieved excellent classification performance across all artifact types.

Introduction

Arterial spin labeling (ASL) MRI provides noninvasive quantification of cerebral blood flow (CBF)I’Z, a disease-relevant imaging marker linked to
functional activity as well as cerebrovascular and neurodegenerative pathophysiology>*. However, its utility can be limited by artifacts that degrade maps in
distinct ways, inflating variance and obscuring true effects®. Existing automated quality control (QC) methods®, including the recently reported QEI-Net’,
generate global quality scores indicating overall scan quality, but do not identify the causes of degradation, thereby limiting their value for guiding corrective
action. Identifying the artifact source during acquisition enables immediate remediation when feasible (e.g., head stabilization or parameter tuning), and
supports targeted protocol review when systematic issues arise. In multi-site studies, such feedback can detect configuration errors early and prevent large-
scale data loss. In this work, we introduce ART-Net, a deep-learning model that predicts the dominant artifact sources for ASL data.

Methods

We utilized 578 ASL scans acquired using varying protocols on Siemens 3T scanners. Each scan was visually evaluated by an expert rater to determine the
dominant artifact source among four common categories: motion, arterial transit-time (ATT), fat-shift, and z-blurring artifacts. The rater also had the option
to assign scans to a no-artifact category, but as some level of artifact is typically present in ASL imaging, all scans were ultimately assigned to one artifact
class, with artifact severity reflected by a QC score. The no-artifact category was therefore excluded from this study. A summary of dataset sources,
acquisition protocols, and expert annotations can be found in Table 1 (Figure 1).

The model was trained and evaluated using stratified 5-fold cross-validation, with class proportions approximately maintained across the training set (N =
467; ~80%), which was divided into training and validation folds, and the held-out test set (N = 111; ~20%). All scans were preprocessed using a uniform
pipeline: CBF map derivation from raw ASL data, registration to MNI space, resampling to 64 x 64 x 64 resolution, intensity clipping to [-80, 80], and
normalization to [—1, 1] by division by 80.

The proposed ART-Net architecture (Figure 2) comprises four convolutional blocks with residual connections and 2x2x2 max-pooling layers after the first
three blocks. The network ends with threefully connected layers with 4 neurons in the last layer, one for each class included in this study. A dropout rate of
20% was applied after the fully connected layers. Training used the Adam optimizer (learning rate = 0.0001, batch size = 32), early stopping (patience = 50
epochs), and learning-rate reduction on plateau (patience = 15 epochs). A weighted categorical cross-entropy loss, with weights inversely proportional to
class frequency, was used as the loss function of this approach. Predictions on the held-out test set from the five fold models were averaged for reporting

model performance.

For interpretability, Grad-CAM!'? activation maps from the fifth convolutional layer were used to highlight spatial regions contributing most strongly to
artifact classification. Performance was evaluated using confusion matrices, one-vs-rest receiver operating characteristic (ROC) curves with area under the
curve (AUC), and precision-recall curves with average precision (AP) for each artifact class. Confidence intervals (95%) for ROC-AUC and AP were
estimated by bootstrap resampling (n = 10,000). Additional performance metrics included recall, precision, accuracy, Fl-score, and specificity for each
artifact category.

Results

The confusion matrix (Figure 3A) showed strong diagonal dominance, indicating robust classification across all artifact types. Motion artifacts exhibited the
most diverse misclassification pattern (79.1% accuracy), most often being confused with z-blurring (11.6%) or transit-time (9.3%) artifacts.
Misclassifications were infrequent and primarily involved cases with multiple co-occurring artifacts where the model’s predicted dominant source differed

from expert assessment. Representative test cases with correct (left) and incorrect (right) classifications are illustrated in Fig 4,

The one-vs-rest ROC-AUC values further demonstrated excellent discriminative performance: 0.94 (95% CI: 0.89-0.98) for motion, 0.99 (95% CI: 0.97-



1.00) for z-blurring, 0.97 (95% CI: 0.92-0.99) for transit-time, and 0.99 (95% CI: 0.98-1.00) for fat-shift artifacts (Figure 3B).

Discussion and Conclusion

ART-Net is the first deep learning framework to identify the dominant sources of ASL artifacts, achieving performance comparable to expert assessment. By
providing source-level classification and Grad-CAM-based localization, ART-Net transforms quality control from a global rating into actionable guidance for
acquisition and analysis, with potential for real-time implementation at the scanner console. Future work will expand training across vendors, protocols, and
artifact sources, incorporate multi-label classification, and integrate ART-Net with QEI-Net for comprehensive ASL quality evaluation.
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Figures and Tables

‘Table1. Information of the different datasets used in this work.

Sample  Motion  Z-Blurring AT Fat Shift
Dataset Protocol gy, arifact Artifact Artifact Artifact
Alzheimer s Disease | 1
Neuroimaging Iniiative | 20 70 56 0 14 0
(ADNY)"
Multi-Ethnic Study of | 3D BS
Atherosclerosis (MESA)”> | PCASL ‘22 s 3 4 124
Systolic Pressure | 2D
Intervention (SPRINT)" trial | PCASL ~ *® @ © 2 ©
Coronary drtery Risk | o1y
Development in Young Adults 36 2 0 4 0
(CARDIA)" | PCASL
National Alzheimer's
Coordinating Center S?Aii 12 2 55 55 0
(NACC)S
Vascular Contribuions 10 | 3o
Cognitive Impairment and | pOaS) 58 2 ss 1 0
Dementia (VCID)'* N
Total = 558 235 13 % 124

Abbreviations: PASL: Pulsed ASL, PCASL: Pscudo-Continuous ASL, BS: Background Suppression.

Table 2. Classification performance metrics for each artfact source.

Artifact Source __ Accuracy (%)

Precision (%)

Motion 88.29 89.47 79.07 83.95 94.12
ZBlurring 94.59 8148 95.65 88.00 9432
arT 92.79 7127 85.00 80.95 9451

Fat Shifi 99.10 100.00 96.00 97.96 100.00

Figure 1. Table | summarizes the datasets used in this study, including the source, acquisition protacel, and the sample size
corresponding to cach artifact class. Table 2 shows the the
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Figure 1: Table 1 summarizes the datasets used in this study, including the source, acquisition protocol, and the sample size
corresponding to each artifact class. Table 2 shows the performance of ART-Net on the held-out test set (n=111).
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Figure 2: Schematic of the artifact classification approach: The network consists of four convolutional blocks followed by three fully

connected layers. The block on the right shows the detailed schematic of each convolutional block, which incorporates residual

connections, cbj_4 denote the corresponding convolutional blocks.
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Figure 3: ART-Net performance on the held-out test set (n = 111): A) Confusion matrix showing artifact classification results. True
and predicted labels are shown in x and y axes respectively. Cells report counts with column-normalized percentages. B) One-vs-rest
classification performance for motion, z-blurring, transit-time, and fat-shift artifacts. For each class, ROC (left) and precision—recall

(right) curves are shown with bootstrapped 95% confidence bands, reporting AUC and average precision (AP).
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Figure 4: Examples of ASL CBF maps with correct (left) and incorrect (right) ART-Net predictions from the held-out test set. Yellow
arrows indicate artifact-affected regions where ART-Net and human expert agreed on the dominant artifact source. In cases of
misclassification, orange arrows highlight regions exhibiting the artifact source predicted by ART-Net, while green arrows indicate
regions of the artifact source identified by the expert rater.
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Figure 5: Representative examples from the held-out test set showing ASL CBF maps of each artifact source (top row) and
corresponding heatmaps generated from ART-Net (bottom row). The heatmaps highlight regions that contributed most to the artifact
classification. The examples demonstrate that these regions spatially overlap with the actual artifact locations.



