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Abstract—The accurate segmentation of brain tissues in magnetic resonance imaging (MRI) is a critical component in the analysis
of neurological conditions as well as in neuroscientific research. This paper presents a comprehensive pipeline for the development and
implementation of a probabilistic brain atlas alongside tissue probability models using a dataset of MRI images. The methodology integrates
image registration techniques, including rigid, affine, and non-rigid transformations, to align images with a common space. A probabilistic
atlas is then constructed, representing the statistical distribution of tissue types across the dataset. Further, tissue probability models are
generated to facilitate the translation of voxel intensity information into tissue-specific probability maps. The resultant atlas and models
provide a robust framework for improved brain tissue segmentation, offering detailed anatomical references that can enhance the diagnostic
process and contribute to the precision of neuroscientific studies. The validity of our approach is demonstrated through the qualitative
evaluation of the atlas and probability models, which show high precision and clear differentiation of brain tissues.
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I. INTRODUCTION

Image registration is an essential task in medical imaging
as it enables different images to be aligned into a shared

spatial frame of reference. This procedure is crucial for a
range of applications, including comparing patient scans over
time, combining information from diverse imaging modali-
ties, and mapping individual images to standardised anatom-
ical atlases. Through techniques such as rigid, affine, or non-
rigid transformations, image registration adjusts for trans-
lational, rotational, and scaling discrepancies between im-
ages. This allows the integration of multi-temporal or multi-
modal datasets, enabling the synthesis of information vital
for pathology identification and monitoring, treatment plan-
ning, and the improvement of our understanding of brain
anatomy and functional connectivity. Following the metic-
ulous process of image registration, the creation of a proba-
bilistic atlas becomes the subsequent pivotal step. This atlas
is constructed by aggregating and analysing the aligned im-
ages from a diverse population, which allows for the deter-
mination of the statistical probability of tissue types at each
voxel across the dataset. The main goal of this laboratory
is to establish a comprehensive pipeline for creating a proba-
bilistic atlas. This includes registering the dataset images and
developing tissue models that assign probabilities to intensity
values corresponding to different brain tissues.

II. DATASET

To implement the probabilistic atlas, we have utilised a
dataset composed of 15 different MRI images. For each of
the cases, we have the following modalities:

• T1-weighted (T1)

• Ground Truth (GT) of the different brain tissues

• Mask of the Brain tissue area

An example of the different image modalities in the dataset
can be observed in Figure 1.

Fig. 1: Example of the different modalities in the dataset. A) T1 B)
Ground Truth C) Mask of the Brain Tissue Area

III. METHOD: PROBABILISTIC ATLAS

In this section, the procedures that have been followed to
carry out the probabilistic brain atlas and the tissue proba-
bility models will be presented.

I. Registration

In order to propagate the labels and build the atlas, the images
need to be registered to a fixed image. As the chosen fixed
image will have an impact on the resulting atlas, it is benefi-
cial to choose the fixed image as the image most similar to all
other images. In order to compute the similarity measure, the

1



MEDICAL IMAGING REGISTRATION AND APPLICATIONS (MIRA)

images need to be registered; to be more specific, the images
need to have the same dimensions. For this, rigid registra-
tion is performed. Afterwards, the similarity measures are
computed, and the fixed image is chosen. Finally, the reg-
istrations are computed using the fixed image found. The
different steps of the mentioned approach can be observed in
the Figure 2.

1. Rigid Registration

In order to compute the similarity between the images in the
dataset, we first need to register them. To implement this
task, we have chosen a rigid transformation due to its sim-
plicity and low computational cost. This transformation is a
geometric transformation that preserves distances and angles
between points. This means that under a rigid transforma-
tion, an object is rotated and translated but not scaled or dis-
torted. In a three-dimensional space, a rigid transformation
involves translation and rotation, and it can be represented by
the following formula:
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where:

• (x′,y′,z′) are the coordinates after transformation.

• (x,y,z) are the coordinates before transformation.

• Ri j are the elements of the 3x3 rotation matrix R, which
represents rotation around the x, y, and z axes.

• (tx, ty, tz) are the translations along the x, y, and z axes.

To perform the registration we used the Elastix library [1].

2. Similarity Measure

In order to align our dataset accurately, we employed the
Mean Squared Error (MSE) to measure the similarity be-
tween images, averaging this metric over all voxels during
each comparison. After computing the MSE of a given im-
age with respect to all the other images, the average of all
the MSE values has been computed. Then, the image that
yielded the lowest average MSE, which happened to be case
1010, was selected as the fixed image for the final registra-
tion. A lower MSE indicates a greater similarity between im-
ages, leading to minimal differences and optimal alignment
throughout the dataset.

The average mean squared error (MSE) for the i-th image
in the dataset with respect to all other images is given by the
formula:
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where:

• M is the total number of images in the dataset.

• N is the number of voxels in each image.

• Ii,k is the intensity of the k-th voxel in the i-th image.

• I j,k is the intensity of the k-th voxel in the j-th image.

Fig. 2: Workflow of the different steps of the registration approach.

3. Final Registration

Finally, the registrations are recomputed with the previously
chosen fixed image. Instead of a rigid registration, a multi-
step and multi-resolution registration is employed. First, the
images are registered rigidly. Secondly, the images are reg-
istered with an affine registration. Thirdly, a b-spline multi-
resolution registration is performed. Here, an image pyramid
with six levels is chosen. Each level’s resolution is half that
of the previous level. Furthermore, an advanced normalised
correlation metric with a transform bending energy penalty is
chosen as proposed by [2]. All parameter files are available
onmodelZoo.

II. Label Propagation

To create the probabilistic atlas, we needed to apply the pre-
viously computed registration to the labels of each of the im-
ages in the dataset. Using the transformation matrices ob-
tained in the previous section, in this step we transformed
each of the label images separately. This is done to prevent
any overlap or interpolation errors between the labels.
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III. Building the Probabilistic Atlas

After the label propagation is carried out, we construct our
probabilistic brain atlas by computing the voxel-wise mean
across all propagated labels of each image, treating each label
distinctly. In the Equation 3, we can observe the formula
used to implement this task.

Pk(x|k) =
1
N

N

∑
i=1

Mk,i(x|k) (3)

Where:

• Pk(x) is the probability of voxel x belonging to a class
k. The sum of the different class probabilities given a
specific voxel, will sum 1.

• N is the total number of images in the dataset.

• Mk,i(x|k) is the intensity value at voxel x for class k in
the i-th image.

IV. Building the mean image

A template or mean image is commonly used for registration
or analysis options at a later point. In order to compute this
image, the voxel-wise mean of the registered moving images
and the fixed image are taken.

I(x,y,z) =
1
N

N

∑
k=1

Ik(x,y,z) (4)

IV. METHOD: TISSUE MODELS

The tissue probabilistic model is a strategy in which the voxel
intensity information of each of the images in our dataset is
translated into a map of tissue probabilities. This map will
provide us with the probability of a given intensity value be-
longing to each of the tissue labels.

To compute this model, we have followed the next steps:

1. Intensity Distribution

To build the tissue models, we first computed the inten-
sity profiles of our dataset by applying the Ground Truth
(GT) masks to each image, acquiring the intensity values,
and storing them into separate vectors for each label. This
gave us three distinct vectors representing the intensities of
white matter (WM), grey matter (GM), and cerebrospinal
fluid (CSF). Before doing so, in order to ensure consistent
intensity values across different images and to facilitate ac-
curate comparison and analysis, we employ Min-Max nor-
malisation to normalise the intensity values of each image
within a range of [0,255]. Finally, we created a histogram
from each vector and combined them to form a comprehen-
sive histogram that maps out the distribution of tissue inten-
sities.

2. Histogram of Tissue Probabilities

After computing the histogram, we implemented a histogram
of tissue probabilities. To develop this task, we followed the
next steps:

• Normalisation 1: We normalised the histograms by di-
viding the values in each class by the total sum of values
for that class, thereby scaling the histograms to ensure
they all fit within the same range on the y-axis. Ad-
ditionally, the area of the histogram is now one, trans-
forming the histogram into a probability distribution.

• Normalisation 2: We normalised the probability distri-
bution to ensure that the sum of probabilities for each
intensity value adds up to one.

• Gaussian Filter: Finally, to smooth out sharp peaks
and create a more gradual distribution of tissue prob-
abilities, we applied a Gaussian filter with a standard
deviation of σ = 20 to the histograms of each label.

After smoothing the histogram with the Gaussian filter,
we generated a csv file containing three columns that
represent the probabilities for each tissue type for every
intensity value.

V. RESULTS

In this section, some qualitative results corresponding to the
registration, probabilistic atlas, and tissue models will be pre-
sented.

To begin, Figure 6 shows an example of the outcomes of
our final registration. Then, in Figure 7, an example of sev-
eral planes (Axial, Coronal, and Sagittal) of distinct slices of
our probabilistic atlas constructed in subsection III, is shown.
Following that, in Figure 3 and Figure 4, we can see the evo-
lution of our tissue probability model presented in Figure 5.
Finally, in Figure 8, we can see an example of our Mean Im-
age, which was developed in subsection IV.

Fig. 3: Intensity distribution of the different tissues in the dataset.

Fig. 4: Normalized intensity distribution of the different tissues in
the dataset.
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Fig. 5: Tissue probability.

VI. QUALITATIVE EVALUATION

As visible from Figure 7, the atlas has probabilities close to
one (white) for regions of homogeneous tissue. Furthermore,
the probabilities in the boundary regions go smoothly from
one to zero (dark grey to light gray). From looking at the
probabilistic atlas alone, differentiation between the differ-
ent tissues is relatively simple, as the expected tissue shapes
are apparent.
While the mean image looks slightly blurry in the boundary
regions, the different brain structures can be clearly identi-
fied. The skull is relatively smooth through the entire image
and doesn’t show big jumps. In combination, these results
should allow for a good registration of the atlas.
Due to the applied Gaussian smoothing, the tissue models
look very smooth. Furthermore, the tissues are in the ex-
pected range and order in terms of intensities. First, the cere-
brospinal fluid. Second is the grey matter, and last is the
white matter. After normalising a new image to the intensity
range of 0 to 255, the mapping of the tissue probabilities to
the intensities should be accomplishable and beneficial for
segmentation tasks under the assumption that the new image
has a similar distribution.

VII. CONCLUSION

The present study effectively constructed a comprehensive
pipeline to generate probabilistic brain atlas and tissue prob-
ability models by capitalising on the robust functionalities of
image registration. Our methodology encompassed metic-
ulous steps, starting from rigid registration to label propa-
gation, and culminated in the construction of a finely de-
tailed probabilistic atlas. The resultant probabilistic atlas
demonstrated a high level of precision, with clear demarca-
tions of tissue boundaries and homogeneous regions. Fur-
thermore, the tissue probability histograms, normalised and
smoothed, offer a robust reference for mapping tissue types
in MRI scans, enhancing the potential for accurate diagnos-
tic applications. As we look ahead, we are excited to use the
presented project to address brain tissue segmentation. By
employing the intensity information provided by the tissue
models and the spatial information obtained from the proba-
bilistic atlas, these novel tools will enable us to execute seg-
mentation with greater precision. We anticipate that by doing
so, the segmentation’s performance will be significantly en-
hanced, thereby facilitating the resolution of neuroimaging
challenges that may assist in the diagnosis, treatment, and
follow-up of millions of individuals afflicted with neurologi-

cal disorders.

VIII. DESIGN AND IMPLEMENTATION

Throughout the development of this project, we rigorously
followed the principles of object-oriented programming and
constructed our solution from scratch. The theoretical con-
cepts that were covered in the theory lectures served as the
foundation for the entire implementation, guaranteeing a ro-
bust foundation based on established academic principles.
By following this systematic approach, we were able to ac-
quire a more profound comprehension of every element of
the algorithm as we manually pieced together every function
in the project classes.

IX. PROJECT MANAGEMENT

This project, which was developed from the ground up by
two team members, required innovative input as well as thor-
ough planning. This project was completed in four lab hours,
as expected, due to our good basis in the theoretical issues
of the tactics used. Our time management strategy has al-
ways been largely focused on increasing productivity inside
lab hours by leveraging the benefits of pair programming to
improve work execution and successfully troubleshoot. The
journey from a blank slate to a fully-functional probabilistic
brain atlas and tissue probabilistic model demonstrates our
dedication to developing this project with the highest quality
and efficiency.
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Fig. 6: Example of the registration results. In the first half of the figure,we include the original image and corresponding ground truth.
A,B, C, and D correspond to the images 1010 (fixed), 1013, 1036, and 1017, respectively. In the second half of the figure, we can observe

the registration of both the original image and the ground truth. E,F, G, and H correspond to the images 1010 (fixed), 1013, 1036, and
1017, respectively.
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Fig. 7: Example of different planes (Axial, Coronal and Sagital) of different slices of our probabilistic atlas. A) Slice nº 145, B) Slice
nº156, C) Slice nº91, D) Slice nº185.

Fig. 8: Example of slice nº151 of our final Mean Image.
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