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Abstract—Brain tissue segmentation is crucial in medical imaging for accurately distinguishing different brain areas and is essential for
diagnosing and treating neurological conditions. It also significantly aids neuroscientific research by allowing for in-depth study of brain
structure and function, advancing our knowledge of the brain. In this report, two of the most popular techniques are combined: the Gaussian
Mixture Model and the Probabilistic Atlas. For this, multiple initialization types, independent segmentation tasks, and different atlases are
compared. It has been shown that using a Gaussian mixture model and an atlas built from images from the same scanner and a similar
patient demographic improves segmentation performance but might result in lower generalizability.
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I. INTRODUCTION

I n the discipline of medical imaging, image segmentation
is among the oldest techniques utilized. In order to en-

hance patient diagnosis and treatment, the objective of this
procedure is to segment the image into subregions. A con-
ventional method in brain imaging is to divide an image of
the brain into a collection of distinct regions that share sim-
ilar characteristics (such as intensity, texture, homogeneity,
and so forth) in order to extract the tissue. The methodol-
ogy of tissue segmentation from magnetic resonance (MR)
images, including grey matter (GM), white matter (WM),
and cerebrospinal fluid (CSF), is commonly employed in
the domain of quantitative brain analysis. Diseases such as
Alzheimer’s disease (AD), Parkinson’s disease, and others
can be better identified and, hence, treated.

This segmentation can be accomplished using either un-
supervised or supervised algorithms. Clustering is among
the most frequently employed algorithms for this aim. In
this laboratory, the primary objective is to implement differ-
ent segmentation approaches, including clustering methods,
probabilistic atlases, and intensity information maps.

II. DATASET

The dataset utilised to perform this laboratory contains 20
cases. For each case, a T1-weighted scan and a ground
truth (GT) consisting of segmentation masks corresponding
to white matter (WM), grey matter (GM), and cerebrospinal
fluid (CSF) are provided. An example of the different image
modalities of the dataset can be observed in Figure 1.

Fig. 1: An example of the different modalities of the dataset A)
T1-weighted B) GT

III. METHOD

I. Atlas registration

Prior to the segmentation, a registration step was performed
to register the atlas, i.e., the mean image, to the target. For
this step, a rigid, an affine, and a multi-resolution b-spline
registration were carried out in this order. To accomplish
a multi-resolution registration, a six-level pyramid was cho-
sen. Furthermore, an advanced normalised correlation metric
with a transform bending energy penalty is chosen as pro-
posed by [2]. All parameter files are available on modelZoo.
All registrations were computed using itk-elastix [1].
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II. Segmentation without GMM

1. Segmentation using Tissue Models

Among the various segmentation methods tested in this ex-
periment, tissue model segmentation was the primary choice.
This approach relies solely on voxel intensity data for seg-
mentation, thereby excluding spatial information from the
images. Previously, we computed a 256×3 matrix (the Tis-
sue Models Probabilities), where 256 represents the proba-
bility of the normalised intensity values of the images, and
3 corresponds to the brain’s tissue types. For segmentation,
values 1, 2, and 3 were assigned to WM, GM, and CSF, re-
spectively, for each intensity level in the range [0,255], based
on the highest probability across the three tissue types. The
formula used is as follows:

TissueModel = argmax
j∈{0,1,2}

(Prob[i, j]) for i = 0,1, . . . ,255

(1)
After computing the highest probability across the three tis-
sue types, we have used this information to change each pixel
intensity value of the original image by the corresponding
value of the tissue model. As a result of this, an image seg-
mented into WM, GM, and CSF is obtained.

2. Segmentation using Probabilistic atlas

For this segmentation, unlike the previous segmentation ap-
proach, the only information used to segment the image is
the spatial information of the pixels. Before segmenting the
image, as explained in the subsection I, we registered the
probabilistic atlas, which was computed in the previous lab,
to each of the images in the dataset. Then, similarly to the
previous step, values 1, 2, and 3 were assigned to WM, GM,
and CSF, respectively, for each pixel of the image, based on
the highest probability across the three tissue types. The for-
mula used is as follows:

Segmentation = argmax
l∈{1,2,3}

(Prob[i, j,k, t]) for each (i, j,k)

(2)
where:

• i, j,k are the indices representing the spatial dimensions
(x, y, z) of the image.

• t is the index representing the different tissue types in
the fourth dimension of the Probabilistic Atlas.

After computing this formula, the image tissue segmentation
is acquired.

3. Segmentation using Both Approaches

After computing the previous segmentations, in which we
used intensity information and spatial information indepen-
dently, we have computed a final approach consisting of a
combination of both of them. To perform this combination,
we have utilised the tissue models to create an image of in-
tensity probabilities. Subsequently, we have multiplied the
intensity probability image by the probabilistic atlas. As a re-
sult, a 4D image with the probabilities of each of the tissues,

is created. Then, as a last step, following the same method-
ology, values 1, 2, and 3 were assigned to WM, GM, and
CSF, respectively, for each pixel of the image, based on the
highest probability across the three tissue types. The formula
explaining this entire process is as follows:

· Compute segmentation for each tissue:

intensityProbt =
255

∑
i=0

tissueModelsi,t · Iimage=i (3)

· Multiply by Probabilistic Atlas:

probImaget = intensityProbt · atlasProbt (4)

· Finally, determine the segmentation:

finalSegx,y,z = argmax
t∈{1,2,3}

(probImage[x,y,z, t]) (5)

where:

• tissueModelsi,t represents the probability value for in-
tensity level i and tissue type t.

• Iimage=i is an indicator function that is 1 where the im-
age intensity is i and 0 elsewhere.

• atlasProbt is the probabilistic atlas for tissue t.

• finalSegx,y,z is the final segmentation label for voxel
(x,y,z).

III. Segmentation with GMM

1. Improvements in GMM computation

In comparison to the last implementation of the Gaussian
Mixture Model, multiple changes have been made. Firstly,
redundant calculations have been removed. Secondly, the
convergence criteria have been adapted to allow for faster
convergence with similar robustness. The new convergence
criteria can be seen in Equation 6:

| log(φt+1)− log(φt)|< ε (6)

where

φ =
1
N

N

∑
i=1

pi(x|θ) (7)

with

p(x|θ) : Probability density function
θ : Parameters of the model
N : Number of Pixels

In this formula, the value ε was chosen empirically as 10−6.
Additionally, if no convergence is reached after 500 itera-
tions the algorithm is stopped. Thirdly, and most impor-
tantly, the computation of the probability density function
has been changed. More specifically, the computation of the
Mahalanobis distance has been adapted after [3] using the
Cholesky decomposition, allowing for faster computation.
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The Cholesky decomposition of the covariance Σ is given by
Equation 8.

Σ = LLT (8)

The computation of the Mahalanobis distance can be
changed to Equation 9

x Σ
−1 xT = x (LLT ) xT = (L−1x)2 (9)

where

x : data
L : Lower triangular Cholesky decomposition

2. Initialization Methods

Four different initialization methods are available.

• K-means

• Tissue Model

• Probabilistic Atlas

• Probabilistic Atlas and Tissue Model

While the first two are used to initialise the means, the prob-
abilistic atlas is used to initialise the membership weights.
This allows the computation of one maximisation step in-
between, resulting in updated covariance, means, mixture
weights, and membership weights. In the last method, the
means of the tissue model and the covariance, mixture, and
membership weights of the atlas are used.

3. Integration of the Probabilistic atlas

THe atlas integration into the segmentation process can oc-
cur at various stages: prior to, during, or after the Gaussian
Mixture Model computation. When added afterwards, it in-
volves multiplying the atlas probabilities with the member-
ship weights. When used during the computation, the atlas
probabilities are multiplied by the membership weights in
every iteration; after the expectation step.

IV. RESULTS

I. Metrics

To evaluate the effectiveness of our approach and analyse the
laboratory experiments, we assessed the various cases in our
dataset using two key metrics: the Dice Score (DSC), as out-
lined in Equation 10, and the Balanced Accuracy (BA), which
is presented in Equation 11.

DSC =
2×T P

2×T P+FP+FN
(10)

Balanced Accuracy =
Specificity + Sensitivity

2
(11)

Both the mean and standard deviation were calculated dur-
ing the tests in order to enhance the available information and
afterwards analyse the data in a comprehensive manner.

II. Experiments

In this section, the results of the experiments performed are
shown. The results will be split into multiple parts. First, the
segmentation without a Gaussian mixture model. Second,
the segmentation using GMM and the initialization types pre-
viously mentioned. Third, the segmentation using the atlas
before and during the computation of the Gaussian Mixture
Model

1. Quantitative results

As previously stated, the dice score and balanced accuracy
have been used to evaluate this project. This evaluation can
be observed in Table 1 and Table 2 for the experiments ex-
plained in subsection II, and subsection III, respectively. In
addition, an evaluation of the best approaches, the use of the
probabilistic atlas before and after the GMM, and the seg-
mentation by utilising the MNI atlas, can be observed in Ta-
ble 3.

2. Quantitative results

In order to provide a more accurate evaluation of the differ-
ent approaches implemented in this project, qualitative re-
sults are provided. In Figure 4, we can observe an example
of the segmentation of case 1109 for all the different strate-
gies carried out in this project. In addition, in Figure 5, we
can observe the results obtained by utilising the MNI atlas to
accomplish this segmentation task.

V. DISCUSSION

In this section, the different results of this project will be
discussed and compared to each other.

I. Comparison of different segmentation approaches

Fig. 2: Comparison of the dice obtained for each of the approaches
and tissues.

As explained in subsection II, brain tissue segmentation
can be implemented by using intensity information (tissue
models), spatial information (Probabilistic atlas), or a com-
bination of both. Table 1 shows the resulting dice scores of
testing our dataset with different approaches, which are ex-
plained in Section III. The results demonstrated good perfor-
mance using the different approaches, leading to similar re-
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TABLE 1: RESULTS OF DIFFERENT SEGMENTATION APPROACHES WITHOUT USING GMM ALGORITHM

Initialization Dice: mean ± std BA Time [s]
CSF WM GM

Tissue Models 0.247 ± 0.164 0.780 ± 0.087 0.816 ± 0.111 0.614 ± 0.100 0.644 ± 0.101
Probabilistic Atlas 0.790 ± 0.055 0.846 ± 0.015 0.771 ± 0.019 0.802 ± 0.025 1.478 ± 0.531

Combination of Both 0.856 ± 0.050 0.915 ± 0.012 0.867 ± 0.018 0.879 ± 0.021 108.320± 19.230

TABLE 2: RESULTS OF DIFFERENT INITIALIZATION TYPES

Initialization Dice: mean ± std BA Time [s]
CSF WM GM

K-means 0.196 ± 0.289 0.879 ± 0.089 0.792 ± 0.053 0.703 ± 0.106 40.163 ± 21.664
Tissue Model 0.300 ± 0.313 0.854 ± 0.096 0.839 ± 0.049 0.746 ± 0.087 18.277 ± 14.510

Probabilistic Atlas 0.307 ± 0.319 0.831 ± 0.108 0.840 ± 0.044 0.737 ± 0.082 21.220 ± 11.963

TABLE 3: RESULTS OF DIFFERENT INITIALIZATIONS AND ATLAS INTEGRATION POINTS

Initialization Atlas
Integration Dice: mean ± std BA Time [s]

CSF WM GM
Best initialization* After 0.729 ± 0.092 0.935 ± 0.013 0.883 ± 0.026 0.870 ± 0.047 16.5 ± 14.2

Into 0.623 ± 0.139 0.948 ± 0.010 0.920 ± 0.014 0.830 ± 0.044 29.9 ± 23.0
Tissue Model
& Probabilistic Atlas After 0.354 ± 0.282 0.850 ± 0.108 0.848 ± 0.049 0.756 ± 0.068 21.4 ± 18.1

Into 0.337 ± 0.252 0.876 ± 0.066 0.661 ± 0.332 0.625 ± 0.123 11.5 ± 6.0
MNI Atlas
& Best Initialization* Into 0.374 ± 0.152 0.884 ± 0.017 0.792 ± 0.040 0.756 ± 0.068 29.9 ± 23.0

*Best initialization refers to the "Tissue Model" method in this context.

sults. However, in the case of the tissue models, for the CSF
tissue, we can observe an abrupt gap between the dice ob-
tained by the tissue model approach and the dice obtained by
the other methods. This can be explained by the fact that the
ground truth has been wrongly annotated, since some parts
of the CSF close to the skull are missing. As a result, when
segmenting these regions with the tissue models, the dice de-
crease considerably since it is interpreted as the wrong tissue.
On the contrary, with the other approaches, we are using the
probabilistic atlas and, hence, providing spatial information
to the segmentation. Since this atlas has been built using the
GT that has been wrongly annotated, the obtained segmenta-
tions have a higher dice score due to the fact that the missing
part of the CSF is missing in the atlas too.

II. Comparison of GMM initialization

The Gaussian Mixture Model was initialised with three dif-
ferent initialization types as specified in: K-means, tissue
model, and Probabilistic atlas. For all initialization types,
the segmentation of white matter and grey matter is good,
with dice scores ranging from 0.77 to 0.87. The detailed
results are visible in Table 2. However, the segmentation
of the cerebrospinal fluid is performing significantly worse,
with dice scores ranging from 0.19 to 0.30. Similarly than
in the previous section, this can be attributed partly to the
missing annotation of the cerebrospinal fluid close to the
skull, as displayed in Figure 4. Furthermore, it can be noted
that K-means initialization achieves slightly worse results in
terms of balanced accuracy than tissue model and Probabilis-

Fig. 3: Comparison of the dice obtained for each of the
initialization types of EM algorithm

tic atlas initialization: 0.70 vs. 0.73 and 0.74, respectively.
This difference could have resulted from a-priori information
about the dataset in the form of the training set (n = 15) used
to build the atlas and the tissue model. Due to the fact that
the training and test sets were recorded on the same scanner,
knowledge about the intensity distributions was similar and
therefore provided meaningful information. Finally, it can
be noted that the initialization with the means of the tissue
model led to the most stable results in terms of balanced ac-
curacy. This is especially interesting as the tissue model was
not the top-performing segmentation initialization in terms
of dice score for any of the tissues.
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III. Comparison of Atlas Integration Points

Based on the results from the last section, the best initializa-
tion was chosen to be the means of the tissue models. The
probabilistic atlas can be added after GMM or during. The
quantitative results can be seen in Table 3. The quality of the
segmentations with respect to the dice score and the balanced
accuracy are significantly better when the Gaussian mixture
model is initialised with the tissue model. This is most appar-
ent in the dice score of the cerebrospinal fluid: 0.35 with the
tissue model and atlas versus 0.72 when only using the tis-
sue model. Furthermore, comparing the balanced accuracy
when integrating the atlas after or into the GMM, a relative
big difference is observed: 0.62 vs. 0.75 (Tissue Model and
Probabilistic Atlas Initialization) and 0.83 vs. 0.87, respec-
tively (Tissue Model Initialization). One might be tempted to
say that applying the atlas after the EM leads to significantly
better results. However, upon comparing the qualitative re-
sults, observing Figure 4, image I) and J), the integration of
the atlas into the EM showed a smoother segmentation, es-
pecially of the cerebrospinal fluid. This remained true upon
visual inspection of the other cases and slices.

IV. Comparison with MNI Atlas

To allow for comparison with the MNI Atlas, the best initial-
ization and integration of the EM have been chosen as tissue
model initialization and integration into the GMM. This de-
cision has been made taking both quantitative and qualitative
results into account. Comparing the qualitative results of the
best previous approach, compared to the same approach us-
ing the MNI atlas in Figure 5, shows a significantly worse
segmentation of the cerebrospinal fluid. This observation is
confirmed quantitatively in Table 3 with a Dice Score of 0.37.
It is worth mentioning that the segmentation of white and
grey matter is solid, with dice scores of 0.88 and 0.79. The
difference in quality can be partly attributed to the fact that
the MNI atlas has been built using images from a different
demographic and from a different scanner, resulting in dif-
ferent intensity distributions. As mentioned before, the low
results of the CSF can also be attributed to the imperfections
in the ground truth. Nevertheless, the segmentation using the
MNI atlas shows significant errors at the lateral ventricles
too.

VI. CONCLUSION

To conclude, it is evident that an atlas created from similar
data shows superior segmentation results. On the other hand,
a common space such as MNI is often required to accurately
compare between datasets. Additionally, the effectiveness of
the tissue model has been shown, as its adaptation resulted in
top-performing results among all tested approaches. In com-
parison to a standalone Gaussian Mixture Model, the integra-
tion of both probabilistic atlas and tissue models improved
dice scores significantly. Even as a standalone approach and
especially in combination with the Probabilistic atlas, the tis-
sue model showed excellent performance. In the future, we
hope to integrate the method or the ideas learned into a deep
learning framework. Hence, we are very enthusiastic to work
on the upcoming multi-atlas and deep-learning-based brain
tissue segmentation.

VII. DESIGN AND IMPLEMENTATION

When creating our hybrid approach for brain tissue seg-
mentation, we strictly followed object-oriented programming
principles, building our solution from the ground up in a
modular fashion. The implementation was firmly based on
the theoretical concepts covered in our theory lectures, pro-
viding a solid academic foundation. This systematic ap-
proach allowed us to gain a thorough understanding of the al-
gorithm’s components as we carefully assembled each func-
tion in the class.

VIII. PROJECT MANAGEMENT

This project, collaboratively undertaken by two team mem-
bers, was initiated from the ground up, requiring creative
thinking and comprehensive planning. Contrary to initial
expectations, the project was completed faster than antici-
pated, thanks to the robust code base established in previ-
ous projects. Building upon the foundation of the previous
projects to enhance performance further, we were excited to
see the advancements and improvements our efforts had and
hopefully will yield.
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Fig. 4: Example of the different results obtained in this project. A) Original Image B) GT C) Tissue Models Segmentation D)
Probabilistic Atlas Segmentation E) Combination of C and D F) KMeans Initialization for GMM G) Tissue Models Initialization for

GMM H) Probabilistic Atlas Initialization for GMM I) Best Approach (Tissue Models) including Probabilistic Atlas Into GMM algorithm
J) Best Approach (Tissue Models) including Probabilistic Atlas After EM algorithm K) Tissue Model & Probabilistic Atlas Initialization
For GMM including Probabilistic Atlas After GMM algorithm L) Tissue Model & Probabilistic Atlas Initialization for GMM including

Probabilistic Atlas Into GMM algorithm

Fig. 5: Example of the segmentation by employing the MNI atlas. A) Original Image, B) Ground Truth, C) Best segmentation by
employing our atlas, D) MNI segmentation

6


	I INTRODUCTION
	II Dataset
	III Method
	I Atlas registration
	II Segmentation without GMM
	1 Segmentation using Tissue Models
	2 Segmentation using Probabilistic atlas
	3 Segmentation using Both Approaches

	III Segmentation with GMM
	1 Improvements in GMM computation
	2 Initialization Methods
	3 Integration of the Probabilistic atlas


	IV Results
	I Metrics
	II Experiments
	1 Quantitative results
	2 Quantitative results


	V Discussion
	I Comparison of different segmentation approaches
	II Comparison of GMM initialization
	III Comparison of Atlas Integration Points
	IV Comparison with MNI Atlas

	VI Conclusion
	VII Design and implementation
	VIII Project Management

