

CAD Project: A SKIN LESION CLASSIFICATION APPROACH USING DEEP LEARNING

By

Xavier Beltran Urbano Muhammad Zain Amin

01 INTRODUCTION

• The dataset contains high resolution and different sizes of images.

CAD Challenge 1: Binary Dataset

Types	Number of Images			
	Train	Validation		
Nevus	7725	1931		
Others	7470	1865		
Total	15195	3796		

Balanced dataset

CAD Challenge 2: Multiclass Dataset

Lesion Types	Number of Images		
	Train	Validation	
BCC	1993	498	
Melanoma	2713	678	
scc	376	94	
Total	5082	1270	

Imbalance dataset

02 PREPROCESSING

General Preprocessing

Segmentation step:

To evaluate the segmentation we used the Dice Score Coefficient (DSC). The final model achieved **95% DSC** on the validation set.

Segmentation Step

Segmentation step:

03 CHALLENGE 1 (BINARY)

Challenge 1: Implementation

Model	Input Shape	Parameters
ResNet50V2	(224,224,3)	25.6M
EfficientNetV2B2	(260,260,3)	10.2M
EfficientNetB2	(260,260,3)	9.2M
EfficientNetB3	(300,300,3)	12.3M
EfficientNetB4	(380,380,3)	19.5M
EfficientNetB5	(456,456,3)	30.6M
EfficientNetB6	(528,528,3)	43.3M
EfficientNetB7	(600,600,3)	66.7M
DenseNet201	(224,224,3)	14.3M
DenseNet169	(224,224,3)	20.2M

Challenge 1: Training

04 CHALLENGE 2 (MULTICLASS)

Random Flip

Flip vertically and horizontally by 90°

Random Crop

New cropped area will be a random fraction between 40 - 100 % of original image Random Affine [0 - 90°] of rotation [0 - 20°] of shearing scaling with [0.8 -1.2] of the original area

Color Jitter

[0.7 - 1.3] of the
original brightness
[0.7 - 1.3] of the
original contrast
[0.9 - 1.1] of the
original saturation

Challenge 2: Implementation

O PyTorch

Model	Input Shape	Parameters
ResNet50	(224,224,3) min	25.56 M
DenseNet161	(256,256,3)	28.68 M
EfficientNetB1	(256,240,3)	7.79 M
Swin Tiny	(224,224,3) min.	28.29 M
Swin Small	(224,224,3) min.	49.61 M
Swin V2 S	(256,256,3)	49.74 M
Swin V2 B	(256,256,3)	87.93 M

Challenge 2: Training

We tried the multiclass cross entropy loss in two different settings:-

Weighting

Original Data Split: Calculates class weights to address class imbalance and subsequently feed to the train model. (mel class = 0.6244), (bcc class = 0.85), (scc class = 4.5053)

Sampling

Balanced Data Split: 1694 samples/class (Sampling with replacement)

05 RESULTS

Evaluation Criteria for Challenges

Multiclass challenge

Results: Challenge 1 (Binary Class)

Model	Accuracy	Карра
ResNet50V2	0.8895	0.7788
EfficientNetV2B2	0.8871	0.7743
EfficientNetB2	0.8940	0.7879
EfficientNetB3	0.9059	0.8119
EfficientNetB4	0.9186	0.8373
EfficientNetB5	0.9261	0.8521
EfficientNetB6	0.9245	0.8489
EfficientNetB7	0.8935	0.7866
DenseNet201	0.9028	0.8055
DenseNet169	0.8959	0.7918

Results: Single Best Model (Binary)

Results: Ensembles Challenge 1 (Binary Class)

	Mean Prol	pabilities	Max Prol	pabilities	Majority	Voting
Models Name	Accuracy	Карра	Accuracy	Карра	Accuracy	Карра
All networks	0.9270	0.8539	0.8464	0.6942	0.8669	0.7327
All EfficientNet	0.9296	0.8592	0.8680	0.7370	0.8790	0.7571
Top 5 results (B3,B4,B5, B6, DenseNet201)	0.9320	0.8640	0.8883	0.7772	0.9051	0.8090
Top 3 results (B4,B5, B6)	0.9336	0.8672	0.9120	0.8243	0.9212	0.8421
Top 2 results (B5, B6)	0.9317	0.8635	0.9233	0.8468	0.9270	0.8538

For the prediction of the test set, we used the ensemble utilising **the top 3 best single accuracies**, which are the EfficientNet B4, B5 and B6.

Results: Best Ensemble Model (Binary)

1.0

Predicted label

23

Model	Loss	Accuracy	Карра
ResNet50	0.1470	0.9598	0.9278
DenseNet161	0.1691	0.9504	0.9108
EfficientNetB1	0.1555	0.9606	0.9293
Swin Tiny	0.1683	0.9630	0.9338
Swin Small	0.1477	0.9598	0.9280
Swin V2 S	0.1282	0.9724	0.9507
Swin V2 B	0.1396	0.9724	0.9504

Ensemble Models	Accuracy	Карра
Swin S + Swin V2 S + Swin V2 B	0.9732	0.9520
Swin T + Swin S + Swin V2 S + Swin V2 B	0.9740	0.9534
ResNet50 + Swin S + Swin V2 S + Swin V2 B	0.9748	0.9547
EfficientB1 + Swin S + Swin V2 S + Swin V2 B	0.9780	0.9604

For the prediction of the test set, we used the ensemble utilising the EfficientNet B1, Swin S, Swin V2 S and Swin V2 B.

06 CONCLUSIONS **AND FUTURE** SCOPE

- Deep Learning outperformed classical approaches in both binary and multiclass challenge.
- Fine-Tuning the hyperparameters of training models is important and challenging.
- Leveraging transfer learning proves highly beneficial for enhancing the performance of Deep Learning models, even when confronted with different datasets.
- Transformers perform very well in Computer Vision and give comparable results to Convolutional Neural Networks.

References

[1] Ha, Qishen & Liu, Bo & Liu, Fuxu. (2020). Identifying Melanoma Images using EfficientNet Ensemble: Winning Solution to the SIIM-ISIC Melanoma Classification Challenge.

[2] Team, K. (n.d.). *Keras documentation: Image classification via fine-tuning with EfficientNet*. <u>https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/</u>

[3] <u>https://pytorch.org/vision/main/models/swin_transformer.html</u>

[4]<u>https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/t</u> <u>rain.py#L92-L93</u>

[5] Perez, C. Vasconcelos, S. Avila, and E. Valle, "Data augmentation for skin lesion analysis", in Or 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis (Springer, 2018), pp. 303–311.

