
CAD Project: A SKIN LESION CLASSIFICATION 
APPROACH USING DEEP LEARNING

By 
Xavier Beltran Urbano
Muhammad Zain Amin



01

Table of Contents

INTRODUCTION

● Main Pipeline
● Dataset

PREPROCESSING

● General 
Preprocessing

● Segmentation Step

CHALLENGE 1

● Data Augmentation
● Implementation
● Training

CHALLENGE 2

● Data Augmentation
● Implementation
● Training

RESULTS

● Metrics
● Results Challenge 1
● Results Challenge 2

CONCLUSION AND 
FUTURE SCOPE

● Conclusion of both 
challenges

● Future work



INTRODUCTION

01



03

Main Pipeline



04

Skin Lesion Dataset 

• The  dataset contains high resolution and different sizes of images.

Lesion Types Number of Images

Train Validation

BCC 1993 498

Melanoma 2713 678

SCC 376 94

Total 5082 1270

CAD Challenge 1: Binary Dataset

Types Number of Images

Train Validation

Nevus 7725 1931

Others 7470 1865

Total 15195 3796

CAD Challenge 2: Multiclass Dataset

Balanced dataset Imbalance dataset



PREPROCESSING

02



06

General Preprocessing



07

Segmentation Step

Segmentation step:

To evaluate the segmentation we used the Dice Score Coefficient (DSC). The final model achieved 95% DSC 
on  the validation set.



Segmentation step:

08

Segmentation Step

01.

02.

03.



CHALLENGE 1
   (BINARY)

03



10

Challenge 1: Data Augmentation

Rotation

[0°,90°]

Zoom Range
Up to 20% 

Horizontal Flip

Brightness 
Range

By a factor of 
[0.8,1.2]

Fill Mode

Fill_mode= nearest

Width Shift

Up to 20% of total 
width

Height Shift

Up to 20% of total 
height

Shear Range

[-0.2 rad, +0.2 rad]



11

Challenge 1: Implementation

Model Input Shape Parameters

ResNet50V2 (224,224,3) 25.6M

EfficientNetV2B2 (260,260,3) 10.2M

EfficientNetB2 (260,260,3) 9.2M

EfficientNetB3 (300,300,3) 12.3M

EfficientNetB4 (380,380,3) 19.5M

EfficientNetB5 (456,456,3) 30.6M

EfficientNetB6 (528,528,3) 43.3M

EfficientNetB7 (600,600,3) 66.7M

DenseNet201 (224,224,3) 14.3M

DenseNet169 (224,224,3) 20.2M



Framework

❏ Keras and 

Tensorflow 

12

Challenge 1: Training

Optimizer

❏ Adam optimizer 
was used.

Batch Size

❏ Depending on 
the network: 16, 
32, 64 and 128.

Transfer learning

❏ Imagenet weights 
were used. 

❏ No layer was 
frozen.

Learning Rate

❏ Initial lr=1e-4.
❏ Reduce on Plateau 

based on val loss 
(patient=5).

Loss Function

❏ Binary Cross Entropy 
(default) was used.

Early Stopping 
Criteria

❏ Based on validation 
loss, with a patient 
of 10.



CHALLENGE 2
(MULTICLASS)

04



14

Challenge 2: Data Augmentation

Random Flip

Flip vertically and 
horizontally by 90°

Random Crop

New cropped area 
will be a random 
fraction between 

40 - 100 % of 
original image

Random 
Affine

[0 - 90°] of 
rotation

[0 - 20°] of 
shearing

scaling with [0.8 - 
1.2] of the original 

area

Color Jitter

[0.7 - 1.3] of the 
original brightness

[0.7 - 1.3] of the 
original contrast
[0.9 - 1.1] of the 

original saturation



15

Challenge 2: Implementation

Model Input Shape Parameters

ResNet50 (224,224,3) min 25.56 M

DenseNet161 (256,256,3) 28.68 M

EfficientNetB1 (256,240,3) 7.79 M

Swin Tiny (224,224,3) min. 28.29 M

Swin Small (224,224,3) min. 49.61 M

Swin V2 S (256,256,3) 49.74 M

Swin V2 B (256,256,3) 87.93 M



Framework

❏ Pytorch 

16

Challenge 2: Training

Optimizer

❏ Adam optimizer 
was used.

Batch Size

❏ Depending on 
the network: 16, 
and 64.

Transfer learning

❏ Imagenet weights 
were used. 

❏ No layer was 
frozen.

Learning Rate

❏ Initial lr=1e-4.
❏ Reduce on Plateau 

based on val loss 
(patient=7).

Loss Function

❏ Categorical Cross 
Entropy was used.

Early Stopping 
Criteria

❏ Based on validation 
loss, with a patient 
of 15.



17

Training: Class Imbalance

 Weighting

Sampling

Balanced Data Split:  1694 samples/class (Sampling with replacement)

We tried the multiclass cross entropy loss in two different settings:-

Original Data Split: Calculates class weights to address class imbalance and subsequently feed 
to the train model. (mel class = 0.6244), (bcc class = 0.85), (scc class = 4.5053)



RESULTS

05



19

Evaluation Criteria for Challenges 

Binary challenge Multiclass challenge



20

Results: Challenge 1 (Binary Class) 

Model Accuracy Kappa

ResNet50V2 0.8895 0.7788

EfficientNetV2B2 0.8871 0.7743

EfficientNetB2 0.8940 0.7879

EfficientNetB3 0.9059 0.8119

EfficientNetB4 0.9186 0.8373

EfficientNetB5 0.9261 0.8521

EfficientNetB6 0.9245 0.8489

EfficientNetB7 0.8935 0.7866

DenseNet201 0.9028 0.8055

DenseNet169 0.8959 0.7918



21

Results: Single Best Model (Binary)



22

Results: Ensembles Challenge 1 (Binary Class)  

Models Name Accuracy Kappa Accuracy Kappa Accuracy Kappa

All networks 0.9270 0.8539 0.8464 0.6942 0.8669 0.7327

All EfficientNet 0.9296 0.8592 0.8680 0.7370 0.8790 0.7571

Top 5 results (B3,B4,B5, B6, 

DenseNet201)
0.9320 0.8640 0.8883 0.7772 0.9051 0.8090

Top 3 results (B4,B5, B6) 0.9336 0.8672 0.9120 0.8243 0.9212 0.8421

Top 2 results (B5, B6) 0.9317 0.8635 0.9233 0.8468 0.9270 0.8538

Mean Probabilities Max Probabilities Majority Voting

For the prediction of the test set, we used the ensemble utilising the top 3 best single accuracies, which are 
the EfficientNet B4, B5 and B6.



23

Results: Best Ensemble Model (Binary)



24

Results: Challenge 2   (Multiclass) 

Model Loss Accuracy Kappa

ResNet50 0.1470 0.9598 0.9278

DenseNet161 0.1691 0.9504 0.9108

EfficientNetB1 0.1555 0.9606 0.9293

Swin Tiny 0.1683 0.9630 0.9338

Swin Small 0.1477 0.9598 0.9280

Swin V2 S 0.1282 0.9724 0.9507

Swin V2 B 0.1396 0.9724 0.9504



25

Results: Best Ensemble Model (Multiclass)



26

Results: Challenge 2   (Multiclass) 

Ensemble Models Accuracy Kappa

Swin S + Swin V2 S + Swin V2 B 0.9732 0.9520

Swin T + Swin S + Swin V2 S + Swin V2 B 0.9740 0.9534

ResNet50 + Swin S + Swin V2 S + Swin V2 B 0.9748 0.9547

EfficientB1 + Swin S + Swin V2 S + Swin V2 B 0.9780 0.9604

For the prediction of the test set, we used the ensemble utilising the EfficientNet B1, Swin S, 
Swin V2 S and Swin V2 B.



27

Results: Best Ensemble Model (Multiclass)



CONCLUSIONS 
AND FUTURE 
SCOPE

06



29

Conclusion and Future Scope

• Deep Learning outperformed classical approaches in both binary and multiclass 
challenge.

• Fine-Tuning the hyperparameters of training models is important and challenging. 

• Leveraging transfer learning proves highly beneficial for enhancing the 
performance of Deep Learning models, even when confronted with different 
datasets.

• Transformers perform very well in Computer Vision and give comparable results to 
Convolutional Neural Networks.



30

References

[1] Ha, Qishen & Liu, Bo & Liu, Fuxu. (2020). Identifying Melanoma Images using EfficientNet Ensemble: Winning 
Solution to the SIIM-ISIC Melanoma Classification Challenge. 

[2] Team, K. (n.d.). Keras documentation: Image classification via fine-tuning with EfficientNet. 
https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/

[3] https://pytorch.org/vision/main/models/swin_transformer.html

[4]https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/t
rain.py#L92-L93

[5] Perez, C. Vasconcelos, S. Avila, and E. Valle, “Data augmentation for skin lesion analysis”, in  Or 2.0 context-aware 
operating theaters, computer assisted robotic endoscopy, clinical  image-based procedures, and skin image analysis 
(Springer, 2018), pp. 303–311.

https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/
https://pytorch.org/vision/main/models/swin_transformer.html
https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93
https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93



