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Abstract—Brain tissue segmentation is crucial in medical imaging for accurately distinguishing different brain areas and is essential for
diagnosing and treating neurological conditions. It also significantly aids neuroscientific research by allowing for in-depth study of brain
structure and function, advancing our knowledge of the brain. In this project, we present a comprehensive ensemble approach using 2D and
3D convolutional neural networks to segment brain tissues in MR images. We employ the IBSR18 dataset to train and validate our models,
focusing on the segmentation of gray matter, white matter, and cerebrospinal fluid. Our method leverages the strengths of different network
architectures and planes, integrating them into an effective ensemble framework. We demonstrate that this approach not only improves the
accuracy and robustness of segmentation but also provides insightful implications for medical imaging analysis.
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I. INTRODUCTION

S egmentation of medical images has been utilized for
decades and is an indispensable method for enhancing

patient diagnosis and treatment. By means of this procedure,
an image is partitioned into distinct subregions according to
common attributes such as similarity, texture, and intensity.
Common practice in brain imaging is the segmentation of im-
ages into distinct regions, which facilitates tissue extraction.
Particularly, segmenting magnetic resonance (MR) images to
distinguish gray matter (GM), white matter (WM), and cere-
brospinal fluid (CSF) is a popular technique in quantitative
brain analysis. The aforementioned methodology is of con-
siderable importance in the identification and management
of neurological disorders, including Alzheimer’s and Parkin-
son’s disease.

In this project, we have developed an innovative approach
to performing brain tissue segmentation using deep learning
techniques.

II. MATERIALS AND METHODS

I. Dataset

The dataset used to develop this approach contains 18 T1-w
scans of normal subjects from the Internet Brain Segmen-
tation Repository (IBSR) [1], available from the Center for
Morphometric Analysis at Massachusetts General Hospital.
Also known as ISBR18, this dataset is formed by scans with
1.5 mm slice thickness (256 128 256), which have been pre-
viously preprocessed with the Autoseg bias field correction
routines from the Center for Morphometric Analysis. The
dataset is also supplied with the ground truth corresponding
to white matter (WM), grey matter (GM), and cerebrospinal
fluid (CSF) [2]. In addition, this dataset was acquired by

three different laboratories. To implement our approach, the
dataset has been split as follows:

• Training: Case 1, 3, 4, 5, 6, 7, 8, 9, 16 and 18

• Validation: Case 11, 12, 13, 14 and 17

• Test: Case 2, 15 and 10

For the test set, we were not provided with the ground
truth since those cases will be the ones used to evaluate this
project.

II. Preprocessing

In order to better segment the tissues of the brain, some pre-
processing techniques have been applied to the raw data.
They are the following:

• Normalisation: Due to the fact that the scans have been
acquired in different laboratories, their intensity distri-
bution is different. For this reason, a normalization step
has been performed in order to deal with this inconve-
nience. To perform this task, a robust z-normalization
technique has been used. We selected this normaliza-
tion approach due to the non-Gaussian distribution ob-
served in Group 2’s data, characterized by a significant
presence of outliers towards higher values, as shown in
Figure 1. The equation used for normalization is dis-
played in Equation 1.

Xnoramlized =
X −meanQ(X)

stdQ(X)
; ∀X > 0 (1)

Where:

– X are the intensity values.
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Fig. 1: Example of the ISBR18 dataset. Each of the colours (red, orange and blue) corresponds to a different laboratory where the images
were acquired.

– meanQ(X) is the mean computed using the 25th
and 75th quantiles.

– stdQ(X) is the standard deviation computed over
the same quantile range.

• Data augmentation: To improve the algorithm’s relia-
bility, random flips and rotations were performed on the
original images as a part of the augmentation process.

• Slice Selection: Since we want to perform a multi-class
segmentation approach where we have a clear class im-
balance (the CSF label is the minority class), we have
selected the images we used for the training in such a
way that we used as many slices containing CSF as we
could. In the event that we have fewer CSF slices than
the selected minibatch, we randomly select the remain-
ing slices, always taking into account that those slices
do not contain only background. In the event that we
have more CSF slices than we need, we just select them
randomly among the ones we have and discard the re-
maining ones.

III. Models

For this project, numerous model architectures have been de-
veloped from scratch, fine-tuned, and evaluated. These mod-
els include:

1. 2D U-Net

2. 2D Res-U-Net

3. 2D Multi-Resolution-U-Net

4. 2D Dense-U-Net

5. 3D U-Net

All U-Net architectures are adaptations of the original U-
Net from Ronneberger et al. [3]. Some of these adaptations
involve the use of residual and dense blocks. Besides the
models implemented from scratch, other models have been
used, such as the 2D and 3D SegResNet [4] which has been
presented at MICCAI as the winner of the Brats2018 chal-
lenge. The code used is available through MONAI [5]. Since
our project was built using TensorFlow, we chose to modify

the PyTorch model code1 to work with TensorFlow, ensur-
ing consistency throughout the project. Furthermore, Synth-
Seg [6] was used for this project. In comparison to the
techniques mentioned before, SynthSeg is contrast-agnostic,
which means it is not dependent on intensity but focuses on
other features such as shape. The key idea is to deform the
mask and resample each class from a random distribution.

IV. Input

In this project, multiple versions of inputs have been tested.
Firstly, two- and three-dimensional input. For the 3D models,
we’ve utilized the entire image as input. Although a patch-
based approach with patch selection was implemented and
tested for 3D, it’s not discussed further in this report since it
did not improve results and we had sufficient computational
resources available. Secondly, and even more interestingly,
we must take into account the orientation of the 2D slices.
While slice selection, as previously mentioned, is crucial,
it’s equally important to acknowledge that distinct anatom-
ical orientations contain different information. Although ax-
ial slices are commonly used in the literature, we made the
deliberate choice to train multiple models on coronal slices
as well. It is worth mentioning that the axial slices had to
be zero-padded to ensure a square image. As the shape of
the axial slices was 256x128, half of the images had to be
added. However, all padded regions were removed during
the reconstruction of the image.

V. Training

In this section, the techniques used for training the model are
described.

• Loss function: In this challenge, various loss functions,
including dice loss and cross-entropy loss, were exper-
imented with. However, to address the class imbal-
ance issue, we ultimately opted for a weighted categor-
ical cross-entropy loss. This allows us to give a higher
importance, i.e., weight, to the minority class of cere-
brospinal fluid. The formula can be found in Equation 2.

L =−∑w · (y log(ŷ)) (2)

1Accessed on: January 12, 2024. URL: https://docs.monai.io/en/
latest/_modules/monai/networks/nets/segresnet.html
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Here,

– L is the weighted categorical cross-entropy loss.
– w are the weights given to each class.
– y is the ground truth.
– ŷ are the predicted labels.

The weights for each class were empirically chosen
based on the distribution and difficulty of segmentation.
The weights can be found in Table 1.

TABLE 1: THE WEIGHTS ASSIGNED FOR EACH CLASS FOR THE

WEIGHTED CATEGORICAL CROSS-ENTROPY LOSS

Class Weight w

Background 1
Cerebrospinal Fluid 10
Gray Matter 3
White Matter 3

• Learning Rate: Additionally, a learning rate scheduler
was implemented in order to avoid early convergence on
a plateau. If the loss is not decreasing after ten epochs,
the learning rate is divided by ten. This allows for a
refined gradient descent into the minimum. The initial
learning rate was chosen as 5×10−4.

• Early Stopping: Furthermore, early stopping with a pa-
tience of twenty epochs based on the validation loss is
carried out, which means the stopping criteria is trig-
gered after the validation loss does not improve for
twenty epochs. This helps to avoid unnecessary com-
putational costs.

• Best Model: In addition to early stopping, the selection
of the best model is also done using the validation loss.
The selection of the epoch with the lowest validation
loss is performed regardless of whether early stopping
is triggered or not.

VI. Ensemble

Following the training of multiple ensembles, various strate-
gies were employed to merge their outputs. These strategies
are crucial in deciding the final label for each pixel. They
include:

• Majority Voting: The most frequent label predicted by
the models is chosen.

• Mean of Probabilities: Here, each model gives a prob-
ability for each label. The average of these probabilities
is computed for every label, and the label with the high-
est average probability is selected.

• Maximum Probability: The label with the highest
probability across all models is selected.

As over twenty different ensembles with different merging
strategies were evaluated the listing, let alone the discussion
would be out of the scope for this project. Instead, only the
most representative ensembles are chosen. It is worth men-
tioning that only ensembles where each individual model had
similar performances were tested.

• The Coronal Ensemble Mean: 2D U-Net, 2D Dense-
U-Net, 2D Multi-Resolution-U-Net and 2D Res-U-Net
trained only on coronal slices combined with mean of
probabilities.

• The Coronal Ensemble Maximum: Same as the Coro-
nal Ensemble, but combined with the maximum proba-
bility.

• The Coronal Ensemble Majority: Same as the Coro-
nal Ensemble, but combined with majority voting.

• The Axial Ensemble: 2D U-Net, 2D Dense-U-Net,
2D Multi-Resolution-U-Net and 2D Res-U-Net trained
only on axial slices combined with mean of Probabili-
ties.

• The Axial Ensemble Maximum: Same as the Axial
Ensemble, but combined with the maximum probability.

• The Axial Ensemble Majority: Same as the Axial En-
semble, but combined with majority voting.

• The Coronal + Axial Ensemble Mean: 2D U-Net, 2D
Dense-U-Net, 2D Multi-Resolution-U-Net and 2D Res-
U-Net trained on both axial and coronal (separately)
slices combined with mean of Probabilities.

• The Coronal + Axial Ensemble Maximum: Same as
the the Coronal + Axial Ensemble Mean, but combined
with the maximum probability.

• The Coronal + Axial Ensemble Majority: Same as
the Coronal + Axial Ensemble Mean, but combined
with majority voting.

• The Multidimensional Ensemble: 2D Multi-
Resolution-U-Net and 2D Dense-U-Net trained only on
coronal slices and the 3D U-Net and the 3D SegResNet
trained on the full images. All models were combined
with the mean of probabilities.

III. RESULTS

I. Metrics

To evaluate the effectiveness of our approach and analyze
the laboratory experiments, we assessed the various cases in
our dataset using two key metrics: the Dice Score (DSC),
as outlined in Equation 3, and the Hausdorff Distance (HD),
which is presented in Equation 4.

DSC =
2×T P

2×T P+FP+FN
(3)

dH(X ,Y ) = max{dXY ,dY X}= max
{

max
x∈X

min
y∈Y

d(x,y),

max
y∈Y

min
x∈X

d(x,y)
} (4)

II. Evaluation

In this section, the results of some of the experiments carried
out are presented. Table 2 shows the results of the single
models, while Table 3 displays the results of the ensemble
on the validation set. The qualitative result of the best model
can be seen in Figure 2.
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Fig. 2: Comparsion of segmentation results of the best performing ensemble: The Multidimensional Ensemble. Displayed are axial slices
(left), sagittal slices (middle) and coronal slices (right).

IV. DISCUSSION

In the following sections, the results will be discussed criti-
cally based on quantitative and qualitative results.

I. Comparison of Axial and Coronal

Here, the results achieved by training a model on coronal
slices and by training a model on axial slices will be com-
pared. From Table 2 it can be noted that training a 2D ar-
chitecture on coronal slices instead of axial slices leads to an
improvement across all metrics and tissues. This is especially
interesting, as there are four identical model pairs that have
been trained exactly the same. However, the differences are
relatively small: The best axial model, the Multi-Resolution-
U-Net, achieves a mean dice of 0.908 DSC while the best
coronal model, the Dense-U-Net, achieves a mean dice of
0.925 DSC. This trend is confirmed in the results of the en-

sembles (see Table 3). While the coronal ensemble segments
the tissues with a mean dice score of 0.925, the axial ensem-
ble is slightly lower with a mean dice score of 0.914. A pos-
sible reason for this difference might be the different infor-
mation present in the different orientations. Another origin
of the difference might be that the axial slices were heavily
padded, while the coronal slices were not. It would be very
interesting to see such a comparison using identical image
sizes.

II. Comparison of 2D and 3D

Training the network using the 3D image leads to a higher
dice score in gray and white matter (see Table 2). However,
the segmentation results of the cerebrospinal fluid are con-
stant at a dice score of around 0.88. This is rather interesting,
as we expected the 3D model to segment the cerebrospinal

4



MEDICAL IMAGING SEGMENTATION AND APPLICATIONS (MISA)

TABLE 2: SINGLE MODEL RESULTS ON THE VALIDATION SET

Model Dice Hausdorff
CSF GM WM Mean CSF GM WM Mean

2D Coronal U-Net 0.878 0.937 0.933 0.917 39.352 11.344 10.443 20.380
2D Coronal Dense U-Net 0.899 0.937 0.938 0.925 17.168 12.199 8.149 12.502
2D Coronal Multi-U-Net 0.890 0.935 0.936 0.920 26.234 13.391 8.422 16.016
2D Coronal Res-U-Net 0.882 0.931 0.931 0.915 21.894 12.000 10.905 14.933
2D Axial U-Net 0.868 0.929 0.922 0.906 26.598 9.876 9.887 15.454
2D Axial Dense-U-Net 0.868 0.920 0.920 0.902 27.137 11.281 10.580 16.333
2D Axial Multi-U-Net 0.876 0.923 0.926 0.908 30.938 10.546 9.872 17.119
2D Axial Res-U-Net 0.866 0.925 0.921 0.904 23.733 21.277 10.113 18.375
2D Seg-Res-Net 0.877 0.933 0.935 0.915 13.540 9.977 9.449 10.989
3D U-Net 0.882 0.942 0.942 0.922 16.202 12.864 11.574 13.486
3D Seg-Res-Net 0.888 0.935 0.937 0.921 15.198 10.367 9.541 11.702
SynthSeg 0.812 0.829 0.888 0.843 29.822 8.353 12.066 16.747

TABLE 3: ENSEMBLE RESULTS ON THE VALIDATION SET

Model Dice Hausdorff
CSF GM WM Mean CSF GM WM Mean

The Coronal Ensemble Mean 0.895 0.939 0.939 0.925 18.508 9.630 7.783 11.974
The Coronal Ensemble Maximum 0.893 0.939 0.939 0.923 23.860 9.811 8.843 14.171
The Coronal Ensemble Majority 0.890 0.939 0.937 0.922 19.123 11.465 7.564 12.717
The Axial Ensemble Mean 0.884 0.930 0.928 0.914 17.121 10.704 9.127 12.317
The Axial Ensemble Maximum 0.881 0.930 0.927 0.913 23.055 10.655 9.782 14.498
The Axial Ensemble Majority 0.877 0.930 0.925 0.911 22.114 10.946 9.277 14.112
The Coronal + Axial Mean 0.897 0.939 0.938 0.925 16.410 8.902 9.095 11.469
The Coronal + Axial Maximum 0.893 0.938 0.937 0.923 21.901 10.270 9.370 13.847
The Coronal + Axial Majority 0.894 0.940 0.938 0.924 16.611 9.811 8.653 11.692
The Multidimensional Ensemble Mean 0.904 0.945 0.948 0.932 11.918 8.730 7.660 9.436

fluid better. Instead, it seems to reduce errors at the border
of gray and white matter. Most surprisingly, it seems to seg-
ment different areas of CSF with higher confidence than its
2D counterpart. This conclusion is drawn from the fact that
the addition of a 3D model to the ensemble improves the dice
scores of the CSF significantly (0.895 vs 0.904).

III. Comparison of network Architectures

Another key factor was selecting the right model architec-
ture. In the experiments, a multitude of different networks
were implemented and tested, as is obvious from Table 2.
Despite all the different models, it is worth mentioning that
all models had comparable results, with the exception of
SynthSeg. On the one hand, one might say that the reason for
this is the missing information about intensity. On the other
hand, the model was only trained for 1500 epochs ( 18 hours)
instead of the 100.000 epochs proposed in the original paper.
It would be very interesting to see the segmentation results
of SynthSeg after a larger number of epochs. Nevertheless, it
is very interesting to see that, despite the significantly lower
number of epochs, the model was still able to segment the
tissue decently. Especially in terms of Hausdorff distance of
the gray matter where it achieved lowest over all model with
8.353. This is despite the fact that a dice loss is used instead
of a loss taking into account the class imbalance. Further-
more, it is worth mentioning that there is no clear best model
architecture based on the network comparison of axial and
coronal slices. While Multi-resolution U-Net works best for
axial slices, Dense U-Net performs better for coronal slices.

IV. Comparison of Single Model and Ensemble

Judging from both qualitative and quantitative results across
all metrics, it can be said that using an ensemble of mod-
els can be preferred over a single model for our scenario.
Especially, the merging of 2D and 3D models improves re-
sults significantly. As visible from Table 3 the combination
of the information gained from coronal slices and the spatial
information added from a 3D model leads to the best overall
performance with a mean dice of 0.932. It is worth mention-
ing that this combination of 2D and 3D models is the only
one to achieve a dice of over 0.9 for the minority class of
cerebrospinal fluid.

V. Comparison of Merging Strategies

In total, three different merging strategies for ensembles were
tested: majority voting, mean of probabilities, and maximum
probability. As visible from Table 3 taking the mean of the
probabilities performs slightly better than the others (dice of
0.925 vs 0.913 and 0.924 in coronal ensembles and 0.914
vs 0.911 and 0.913 in axial ensembles). The comparison to
majority voting, with a dice of 0,913 for coronal and 0.911
for axial, shows that the inclusion of the probabilities helps to
make the model more robust. However, solely relying on the
maximum probability leads to the use of the most-confident
model, which could be overconfident instead of providing
better segmentation. The key seems to be the comparison
between model confidence and the prediction of the majority
of the models: the mean of probabilities.
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V. CONCLUSION

Summing it all up, multiple conclusions can be drawn.
Firstly, the different orientations of the 2D slices matter. Sec-
ondly, the combination of 2D and 3D helps to segment dif-
ferent different parts more accurately. Thirdly, the ensemble
of multiple models through the mean of probabilities leads
to the most robust results. Overall, this was a very interest-
ing project for both of us. We had the opportunity to test a
multitude of networks, see the importance of preprocessing
steps, adapt to entirely different ideas, such as SynthSeg, or
see the importance of an ensemble. It is safe to say that we
both enjoyed a lot working on this project.

VI. HARDWARE SPECIFICATIONS

In this project, we utilized the NVIDIA RTX A6000 GPU,
featuring 48 GB of GDDR6 memory and based on NVIDIA’s
Ampere architecture, for efficient deep learning computa-
tions. Complementing this, our general computational tasks
were handled by an Intel(R) Xeon(R) Gold 5315Y CPU @
3.20GHz, equipped with 8 cores and 96 MiB of L3 cache,
ensuring robust overall data processing.
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