
Medical Imaging and Applications

Master Thesis, June 2024

QEI-Net: A Deep learning-based automatic quality evaluation index for ASL
CBF Maps

Xavier Beltran Urbano∗,1, Sudipto Dolui1, John A Detre1

1Detre Lab, Departments of Neurology and Radiology, University of Pennsylvania, USA

Abstract

Arterial Spin Labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique widely used for mea-
suring cerebral blood flow (CBF). Compared to more conventional approaches, ASL offers several advantages, such
as the absence of exogenous tracers and ionizing radiation, lower cost, flexibility of being acquired in routine MRI
settings, and is the method of choice to measure CBF in large-scale multisite studies, particularly with repeated ac-
quisitions. However, ASL data can be noisy, and hence quality control (QC) of ASL CBF maps is of particular
importance for this modality. Manual QC is time-consuming, laborious, and subjective, highlighting the need for
automated solutions. In this study, we proposed three novel deep learning (DL) models designed to provide automatic
quality evaluation indices (QEIs) for ASL-derived CBF maps: 7FCN-QEI-Net, Reg-QEI-Net and MSC-QEI-Net. The
resulting QEIs are designed to be continuous numbers in the range of 0 and 1. We also trained a deep learning algo-
rithm (BC-Net) to provide a binarized decision about the quality of the CBF map, which indicates if the map should be
kept or discarded from group analysis. Additionally, we also considered ensembles of the different networks. These
approaches leverage advanced DL techniques to enhance feature representation and achieve superior performance
compared to previous state-of-the-art methods.The models were trained on a diverse dataset that included 250 sam-
ples from multiple multisite studies. These samples were acquired using different protocols and were rated for quality
by three raters, ensuring robustness and generalizability. Additionally, in a separate test set comprising 50 samples,
all the deep learning strategies performed better than the current state-of-the-art method. The correlations between
the automated QEIs and the average manual ratings were higher than the inter-rater correlations. We also derived
and reported QEI thresholds for each method to binarize CBF maps into acceptable and unacceptable categories for
each of the non-binarized methods. While the ensemble approaches perform slightly better, the Reg-QEI-Net pro-
vided comparable performance and is currently our recommended strategy. The results highlight the potential of DL
models in automating and improving the QC process for ASL CBF maps, reducing reliance on manual assessments,
minimizing subjectivity, and enhancing reproducibility and consistency across studies.

The code developed for this work is publicly available at: https://github.com/xavibeltranurbano/QEI-Net
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1. Introduction

The brain is one of the most highly perfused organs
in the body, utilizing approximately 15% of the cardiac
output and 20% of the total body oxygen (Jain et al.
(2010)). Cerebral blood flow (CBF) is classically de-
fined as the volume of blood flowing through a spe-
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cific region of the brain tissue per unit time and is ex-
pressed in units of milliliters of blood per 100 gram
of brain tissue per unit time (unit: ml/100g/min). It
is an important physiological quantity of cerebrovascu-
lar health and provides an important biomarker for the
latter. Changes in CBF correlate with various indica-
tors of cerebrovascular disease, including white matter
hyperintensities (Bernbaum et al. (2015)) and cerebral
microbleeds (Gregg et al. (2015)). Additionally, it also
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Figure 1: Sequential workflow for ASL CBF map acquisition. This diagram delineates the procedural stages, beginning with the acquisition of
control images, followed by the application of labeling and post-labeling delay (PLD). Subsequent subtraction generates the perfusion-weighted
images, which are then utilized to create the detailed CBF maps.

serves as a biomarker of functional neurodegeneration
due to the strong association of changes in CBF with
neural activity (Dolui et al. (2017a)), and therefore can
potentially replace glucose metabolism measurements
obtained using 18F-Fluorodeoxyglucose Positron Emis-
sion Tomography (18F-FDG-PET)(Dolui et al. (2020)).
CBF changes have been associated with the incidence
and severity of dementia (Dolui et al. (2020);Dolui
et al. (2017a);Binnewijzend et al. (2013);Wolk and De-
tre (2012)) and has been shown to be one of the ear-
liest biomarkers to change in the Alzheimer’s Disease
continuum (Iturria-Medina et al. (2016);Dolui et al.
(2024);Fazlollahi et al. (2020)). Moreover, CBF is
potentially modifiable therapeutically and hence can
be used to monitor treatment response (De La Torre
(2013);Dolui et al. (2022)). Consequently, CBF mea-
surement is considered very important in studies on
healthy aging, cerebrovascular and neurodegenerative
disease (Wolk and Detre (2012)).

1.1. Classical methods of measuring CBF
Classical CBF is measured using a “diffusible” tracer

that exchanges from the blood compartment to the tis-
sue compartment, allowing CBF in ml/100g/min to be
measured directly. The first CBF measurements in
humans were made by Kety and Schmidt (Kety and
Schmidt (1945)) by monitoring arteriovenous differ-
ences in nitrous oxide. The current “gold-standard” for
CBF imaging in humans is 15O-PET scanning (Zhang
et al. (2014);Herscovitch et al. (1983)), which utilizes
radioactively labeled water as a perfusion tracer. Other
diffusible tracer approaches used to measure CBF in hu-
mans include radioactive 133xenon (Lassen et al. (1981))
and stable xenon computed tomography (CT) (Yonas
et al. (1991)). Related methods include accumulative ra-
dioactive tracers with single-photon emission computed

tomography (SPECT) scanning, though agreement of
these methods with 15O-PET is suboptimal (Ito et al.
(2006)), and methods that use intravascular tracers such
as perfusion CT (Koenig et al. (1998)) and dynamic sus-
ceptibility contrast (DSC) MRI (Rempp et al. (1994)).
Intravascular tracer methods do not measure CBF di-
rectly but allow CBF to be inferred. All these methods
require the administration of an exogenous tracer and
exposure to ionizing radiation. Hence, they are at least
somewhat invasive and can be difficult to administer to
clinically vulnerable population groups, including the
elderly, infants, and individuals with renal impairments.
Moreover, using such methods to track CBF changes in
healthy aging and in drug studies can be problematic, as
these studies require serial measurements with repeated
exposure to tracers or ionizing radiation and associated
costs.

1.2. Arterial Spin Labeled (ASL) perfusion MRI

ASL is a non-invasive magnetic resonance imag-
ing (MRI) technique for measuring tissue perfusion by
magnetically labeling arterial blood water as an endoge-
nous tracer (Detre et al. (1992)). Since its inception
in 1992 (Detre et al. (1992);Williams et al. (1992)),
ASL has been increasingly included in multisite re-
search studies of brain health. Compared to other tech-
niques for measuring cerebral perfusion, ASL offers ad-
vantages due to its non-invasive nature and the absence
of exogenous radioactive and potentially harmful con-
trast agents. Furthermore, because MRI does not in-
volve ionizing radiation, this method can be used re-
peatedly, for example, to assess the effects of drugs or
to assess longitudinal changes in cerebral perfusion. Fi-
nally, ASL can be acquired as a part of routine MRI,
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Figure 2: Examples of different sources of artifacts in ASL CBF maps. A) Motion Artifact B) Clipping Artifact C) Transit Artifact D) Low SNR
E) High CBF Values F) Low CBF Values G) Probable Label Asymmetry H) Fat Shift Artifact.

which is almost universally acquired in research stud-
ies of brain disorders. ASL has been validated against
other established modalities for measuring CBF (Ewing
et al. (2005);Heijtel et al. (2014);Ye et al. (2000a)). Its
use also extends beyond the brain studies and is being
applied to other organs, including the kidneys, lungs,
heart, placenta, eye, liver, pancreas, and muscle (Taso
et al. (2023)). ASL MRI has also been translated to clin-
ical use.

1.3. ASL MRI Data Acquisition

The acquisition of ASL MRI data involves magnet-
ically labeling inflowing protons of proximal arterial
blood water. For brain perfusion, labeling typically oc-
curs in the neck, where blood flows through the internal
carotid and the vertebral arteries that supply blood to
the brain (see Figure 1). After waiting for a brief period
(post-labeling delay) to allow the flow of the labeled
blood to reach brain microvasculature and tissue, a brain
MRI (labeled image) is acquired. A “control” brain im-
age is also obtained with a sham labeling procedure that
does not magnetically label blood water. The difference
between the control and label image is proportional to
CBF and is converted to absolute CBF quantification us-
ing a proton density image with appropriate models and
assumptions (Alsop et al. (2015);Buxton et al. (1998)).
The control-label difference is a small percentage of
the background signal, which results in a low signal-
to-noise-ratio (SNR) in the CBF images. Additionally,
subject motion, suboptimal choice of imaging param-
eters, and other non-idealities inherent to MRI scan-
ners can lead to severe artifacts (Dolui et al. (2017b);Li
et al. (2018)) (see Figure 2). This can be partially mit-
igated by averaging multiple control-label pairs, using
advanced signal processing strategies, and using back-
ground suppression (BS) of static brain water. BS in-
creases the difference image by 3-10 times (Dolui et al.

(2019);Maleki et al. (2012);Ye et al. (2000b)). Never-
theless, a noticeable amount of artifact might remain in
the resulting CBF image.

1.4. ASL Labeling Methods

Ever since its establishment in 1992, several ASL
protocols have been devised and used, which primarily
differ in labeling and signal readout strategies (see Fig-
ure 3). The classical method invented in 1992, which
was referred to as Continuous ASL (CASL) (Detre et al.
(1992)), continuously saturates or inverts arterial blood
water at the neck for several seconds. However, mod-
ern human MRI scanners utilizing whole-body radiofre-
quency (RF) amplifiers are not capable of continuous
RF excitation. Pulsed ASL (PASL) instantly labels a
thick slab in the neck, and is compatible with body RF
excitation, though the method suffers from lower SNR
compared to CASL. The current recommended labeling
strategy is pseudo-continuous labeling (PCASL), which
employs a series of short RF pulses to mimic continu-
ous labeling. ASL type can also vary based on the du-
ration of the post labeling delay (PLD) – a longer post
labeling delay can ensure delivery of the labeled blood
to the brain tissue, though at the expense of reduced
SNR since the magnetic label decays rapidly. A series
of ASL images acquired with different labeling and/or
PLDs can also be combined to obtain a CBF map, al-
lowing more accurate modeling of regional CBF values
(Woods et al. (2024)). Finally, ASL image quality can
vary based on the type of image readout. Echo-planar
imaging (EPI) was initially the preferred choice because
of speed and sensitivity, though it is being slowly re-
placed by 3D imaging (GRASE or SPIRAL) optimally
combined with BS of static brain tissue. Notably, sev-
eral other variants of ASL exist; for example, velocity
selective ASL (VASL) is an emerging method that la-
bels the arterial blood water close to the imaging site
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instead of the neck (Qin et al. (2022)).

Figure 3: Schematic diagram of imaging and labeling regions for
CASL/PCASL and PASL. In CASL/PCASL, labeling occurs as blood
flows through a single labeling plane, while in PASL, a slab of tissue,
including arterial blood, is labeled (Alsop et al., 2015).

1.5. Artifacts in ASL MRI and the need for an auto-
mated quality evaluation index (QEI)

In recent years, ASL has gained popularity among
perfusion imaging modalities for its use in research set-
tings, largely due to its potential as a biomarker of
cerebrovascular health and brain function and its abil-
ity to be acquired in routine MRI settings. Despite
recent advancements in improving the quality of ASL
images, the resulting CBF maps can still be contami-
nated by artifacts. The most significant source of arti-
fact is physiological noise due to motion, particularly
in non-compliant subjects or in patients who have dif-
ficulty staying still during the scan. Because the con-
trol/label difference represents only a small percentage
of the background signal, any variability in the back-
ground signal due to motion can dominate the differ-
ence signal, leading to large errors that are often not re-
moved during averaging. Retrospective motion correc-
tion techniques are generally used to account for bulk
motion, but such techniques cannot correct for variation
in intensities occurring during the image readout (Fris-
ton et al. (1996);Power et al. (2012)). Motion effects are
less visible, though still present, in acquisitions using
BS of static signal (Ye et al. (2000a);Fernandez-Seara
et al. (2005);Maleki et al. (2012)). Artifacts can also
result from an incorrect or suboptimal choice of acqui-
sition parameters. For example, an insufficiently long
PLD results in labeled blood remaining in large arteries
rather than in the microvasculature or parenchyma, an
effect known as transit time artifact that affects both BS
and non-BS acquisitions. Other problems inherent to
MR imaging, such as thermal noise, chemical shift arti-
facts, and clipping of signals, can produce errors and
artifacts in the resulting CBF maps. For clinical re-
search, another concern is that the number of corrupted
ASL CBF images may increase with disease severity, as
previously found in the AD continuum (Moonen et al.
(2020)), making QC a more prominent need in these
clinical applications.

Because of potential artifacts in the ASL derived CBF
maps, QC is critical for clinical research of ASL MRI to
exclude CBF maps of poor quality that can reduce sensi-
tivity to biological effects of interest. Current QC heav-
ily depends on manual assessment, which is time con-
suming, laborious, and subjective, and therefore not re-
producible and generalizable, especially for large-scale
multisite studies. Therefore, there is a critical need for
a robust and reliable automated quality evaluation in-
dex (QEI) that can objectively assess the quality of ASL
CBF scans. This QEI could also potentially facilitate
real-time feedback during scanning, allowing for im-
mediate adjustments and thereby improving the overall
quality of the acquired images.

1.6. Deep Learning

Deep Learning (DL), a subtype of machine learn-
ing, provides astonishing performance compared to
other state-of-the-art computational methods across var-
ious approaches (Bengio et al. (2013);Deng and Dong
(2014);Lecun et al. (2015);Litjens et al. (2017)), in-
cluding medical imaging. Initially introduced for im-
age classification in computer vision (Krizhevsky et al.
(2012)), DL is now extensively employed to tackle com-
plex problems that analytical methods or traditional ma-
chine learning cannot solve. DL networks are moti-
vated by the neuronal visual processing pathway, where
a visual observation is hierarchically processed along
multiple layers of neurons and eventually abstracted to
different top-level features. Multi-layer artificial neu-
ral networks were proposed decades ago to mimic this
complex learning process, but their use only became
practical with the advent of powerful graphical process-
ing units (GPUs) capable of massively parallel comput-
ing (Bengio et al. (2013);Deng and Dong (2014);Le-
cun et al. (2015);Litjens et al. (2017)). Deep networks
are commonly trained with references; this supervised
learning is equivalent to nonlinear data fitting. While
traditional data fitting is based on a weighted sum of
well characterized base functions, DL is based on the
weighted sum of the output of a hierarchical network
consisting of multiple layers of computing units (artifi-
cial neurons).

1.7. Contribution of this work

In this work, we aimed to tackle the challenge of pro-
viding an automatic and robust QC method for ASL-
derived CBF maps by leveraging DL. We explored mul-
tiple strategies to derive this metric, including both the
use of predetermined features and the entire CBF map
for automatic feature extraction. We then compared
their performances, demonstrating their superiority over
previous approaches.

The specific contributions of this work include the de-
velopment of the following DL-based methods to obtain
a QEI of raw CBF maps:
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• A feature-based regression model, for which we
extracted 7 predetermined features to train a fully
connected network (named 7-FCN-QEI-Net).

• A 3D DL-based regression model (named Reg-
QEI-Net).

• A 3D multi-stage classification model (named
MSC-QEI-Net).

• A 3D binary classification model (named BC-Net).

• Three ensemble methods of the best performing al-
gorithms.

An extensive comparison of these new approaches
with the current state-of-the-art method was performed,
providing insights into their relative performances and
improvements.

2. State of the art

2.1. DL-based regression approaches for neuroimaging

Since deep learning models first made their mark on
neuroimaging in 2014 (Plis et al. (2014)), there has been
an exponential increase in research within the field. This
remarkable growth can be attributed to two main fac-
tors: the increasing availability of data and the improve-
ment of computational resources such as GPUs. Thanks
to these advancements, deep learning has emerged as a
leading approach in medical imaging research, with seg-
mentation and classification tasks ranking at the fore-
front of the most explored areas. However, regression
tasks, which aim to predict a continuous outcome, have
received comparatively less attention due to their per-
ceived complexity. Consequently, several studies, such
as that by (Peng et al. (2021)), have opted to recast the
initial regression challenge into a classification prob-
lem by discretizing the continuum of values into dis-
tinct bins, treated as independent classes during train-
ing. (Leonardsen et al. (2022)) delve into a comparative
analysis of both methodologies, focusing on predicting
brain age from structural MRI scans. Employing a 3D
Convolutional Neural Network (CNN) architecture with
six convolutional blocks, the study experimented with
both approaches by merely altering the last dense layer
and meticulously fine-tuning the hyperparameters for
each approach. Although the outcomes on the test set
were comparably effective for both approaches, the re-
gression method demonstrated markedly superior gen-
eralization capabilities on an unseen dataset, thereby un-
derscoring its enhanced potential for broader applicabil-
ity. In line with these findings, recent studies highlight
the increasing sophistication of deep regression mod-
els tailored for neuroimaging data. For instance, (He
et al. (2022)) introduced deep relation learning, which
utilizes a novel approach by considering multiple rela-
tional aspects between neuroimaging inputs to enhance

regression performance in age estimation tasks. By
leveraging deep neural networks to capture complex and
non-linear interactions, this method provides a more nu-
anced understanding and robust predictions than tradi-
tional methods.

2.2. Deep Learning-based approaches for ASL MRI
In recent years, there have also been notable advance-

ments in the utilization of DL for ASL MRI, result-
ing in considerable improvements when dealing with
certain intrinsic difficulties associated with this image
modality, including its lengthy acquisition periods, in-
adequate SNR, and low spatial and temporal resolu-
tion. In their study, (Kim et al. (2018)) reported sig-
nificant advancements in the quality of ASL MRI im-
ages using CNNs that surpassed those created by tra-
ditional averaging techniques. Building on these im-
provements in imaging techniques, the application of
transfer learning has demonstrated potential for aug-
menting sensitivity, especially in clinical contexts in-
volving AD. For instance, (Zhang et al. (2022)) high-
lighted the efficacy of applying transfer learning from
healthy subjects to ASL perfusion MRI models. This
approach significantly increased the sensitivity of de-
tection methods for AD, illustrating how advances in
deep learning could be specifically tailored to improve
diagnostic processes. The investigation conducted by
(Xie et al. (2020)) presented an innovative DL-based
ASL MRI denoising algorithm that improved the SNR
of CBF images and enabled a 75% reduction in acqui-
sition time while maintaining the integrity of the mea-
surements. Similarly, (Gong et al. (2020)) introduced
a DL algorithm for denoising ASL MRI that combines
CNNs and mutual information from multiple tissue con-
trasts in ASL acquisition. This approach demonstrated
superior performance over traditional and standard deep
learning-based denoising methods by significantly en-
hancing image quality.

2.3. Quality index of ASL CBF maps
As previously stated, QC of ASL CBF maps through

visual inspection is a labor-intensive process that re-
quires significant expertise. This method is also prone to
user bias and subjectivity, particularly when applied to
large sample sizes. The work in (Fallatah et al. (2018))
introduced a well-characterized dual-component scor-
ing system that evaluates the image quality based on
visual contrast and artifact detection and thus reduces
the subjectivity of the rating system. This system, vali-
dated across multiple raters, has demonstrated high re-
producibility and the ability to effectively discriminate
between high- and low-quality clinical scans, offering a
reliable threshold for clinical acceptability; however, it
still suffers from most of the drawbacks of manual rat-
ing.

Parallel to these manual evaluation strategies, there
have been efforts to automate quality assessments. For
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instance, (Li et al. (2019)) developed ASLMRICloud,
an online platform that facilitates the processing of ASL
MRI data. Among other features, ASLMRICloud en-
ables the calculation of a quality index by analyzing
and averaging the voxelwise temporal standard error
(SNR) across the CBF time series obtained from the re-
peated acquisitions of the multiple control/label pairs.
However, this approach cannot assess systematic arti-
facts that are consistent in the time series, such as those
caused by short PLD. Moreover, it cannot be applied
to datasets that include only one output volume of the
average control-labeled difference image rather than the
control-labeled image time series (e.g., product ASL on
a GE MRI scanner). Finally, temporal standard error
considers the quality of the raw data instead of the final
CBF map, which can be of improved quality through the
application of signal processing strategies.

The most recently published contribution to the de-
velopment of an automated QEI for ASL CBF maps
was made by (Dolui et al. (2024)). This novel QEI as-
signs a continuous value between 0 and 1 to each CBF
map, with higher values indicating a superior quality of
the CBF map. The algorithm used predefined features
to train a model against human rating, where the fea-
tures were chosen to replicate the meticulous visual in-
spections usually performed by experts during manual
QC. The computational features integrated into the QEI
methodology involve:

• Structural Similarity: The QEI considers the
similarity between the brain structure and CBF
maps, acknowledging the natural correlation be-
tween structure and function. This feature is cal-
culated by constructing a structural pseudo-CBF
(spCBF) map, utilizing a weighted sum of tissue
probability maps to reflect the higher CBF in gray
matter (GM) compared to white matter (WM). The
Pearson correlation between the spCBF map and
the original CBF map was used as a feature in the
QEI derivation.

• Spatial Variability: Although CBF differs among
tissue types, unusual spatial variability might sug-
gest the presence of artifacts, such as those from
motion or inadequate PLD (see examples in Fig-
ure 4). Therefore, to accurately reflect these vari-
ations, QEI integrates a dispersion index (DI) for
CBF values across GM, WM, and cerebrospinal
fluid (CSF) masks, normalized by the mean GM
CBF.

• Negative GM CBF: Given that physiological CBF
should be positive, the QEI incorporates the pro-
portion of GM voxels showing negative CBF val-
ues, since those voxels represent non-physiological
artifact-affected measures.

The final QEI was performed by fitting these fea-
tures separately to human ratings of 101 CBF maps, and

Figure 4: Examples of large spatial variability in ASL derived CBF
(A) due to motion or (B) the post-labeling delay (150ms) being signif-
icantly shorter than the arterial transit time resulting in labeled signal
retained in the arteries instead of the tissue parenchyma while imag-
ing (Dolui et al. (2024)).

subsequently performing a geometric average of the fits
corresponding to each feature as follows:

QEI = 3
√(

1 − e−3p2.4
ss

)
e−(0.1DI0.9+2.8p0.5

nGMCBF) (1)

where

• pss is the structural similarity.

• DI is the spatial variability.

• pnGMCBF is the proportion of negative voxels in
GM CBF maps.

This method showed similar agreement to inter-rater
reliability, improved statistical analyses, and performed
better than the method developed by (Li et al. (2019)).
Consequently, it is recognized as the state-of-the-art in
automatic QEI for ASL CBF Maps. Therefore, we have
used this study as a benchmark to compare the various
approaches presented in this work.

3. Material and methods

3.1. Datasets
In this study, a dataset comprising 250 samples was

utilized to train the different models. The samples were
collected from several large, multisite studies that uti-
lized diverse ASL acquisition protocols, as detailed in
Table 1. The ratings of the ASL CBF data were metic-
ulously assessed by three expert raters: John A. Detre,
Sudipto Dolui, and Ze Wang. Dr. Detre, the inventor of
ASL, has over 30 years of experience, while Dr. Dolui
and Dr. Wang each have more than 10 years of expe-
rience with this technique. Their extensive experience
in ASL CBF quality assurance ensures the dataset’s re-
liability and validity. Additionally, a separate set of 50
CBF maps rated by Dr. Detre and Dr. Dolui was used as
the test set to assess the performance of the algorithms
on unseen data. All the data used in this project have
been acquired using Siemens MRI scanners.
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Table 1: Information of the different datasets used in this work.
Dataset Protocol Sample Size
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Wang et al. (2013)) 2D PASL 79

Multi-Ethnic Study of Atherosclerosis (MESA) (Austin et al. (2024)) 3D BS PCASL 57

Systolic Blood Pressure Intervention Trial (SPRINT) (Dolui et al. (2022)) 2D PCASL 49

Coronary Artery Risk Development in Young Adults (CARDIA) (Dolui et al.
(2016))

2D PCASL 25

National Alzheimer’s Coordinating Center (NACC) (Dolui et al. (2019)) 3D BS PCASL 34

Vascular Contributions to Cognitive Impairment and Dementia (VCID)
(Sadaghiani et al. (2023))

3D BS PCASL 6

To ensure consistency in the evaluation process
across different raters, specific guidelines were estab-
lished and followed (see Figure 5). These guidelines
are defined below:

• Unacceptable (rating 1): CBF map is severely de-
graded by artifacts and is uninterpretable.

• Poor (rating 2): CBF map has one or more major
artifacts, but can still potentially yield useful infor-
mation.

• Average (rating 3): Acceptable quality CBF map
with minor artifacts that do not significantly reduce
information value.

• Excellent (rating 4): High quality CBF map with-
out artifacts.

Figure 5: Examples of a distinct case for each rating value.

In the regression-based approaches (mentioned in the
introduction and in more detail below), we averaged the
ratings to obtain a composite rating score and also to in-
crease the reliability of the measures. Furthermore, we
wanted the final QEI to be in the [0,1] range and hence

normalized the ratings between 0 and 1. To facilitate
the rating process, a specialized tool was developed, as
outlined in Appendix A.

3.2. Dataset Partitioning
To validate the proposed approaches, we employed

a 5-fold cross-validation (CV) strategy. Thus, in each
fold, 80 percent of the data was used to train the model,
and the remaining 20 percent was kept as a validation
set. Finally, as previously mentioned, we tested our
models using a test set consisting of 50 samples.

3.3. Preprocessing
The CBF maps were derived from ASL data using

standard processing strategies (Alsop et al. (2015)). For
the purpose of developing the QEI, additional prepro-
cessing was required (see Figure 6). We have followed
two different DL strategies, a FCN based on predeter-
mined features and CNNs using the CBF images. For
the former approach, two preprocessing steps were ap-
plied:

• Generation of binary masks corresponding to GM,
WM and CSF to extract CBF signal in the regions.

• Smoothing of the CBF images using a 5 mm
isotropic kernel. A similar approach was used by
(Dolui et al. (2024)) to extract features from the
CBF maps.

For the CNN approaches (Reg-QEI-Net, MSC-QEI-
Net, and BC-Net), we used the SimpleITK library to
perform an affine transformation, resampling the dimen-
sions and spacing of the images to a uniform size of
64x64x32. This step accounted for variations in im-
age sizes acquired across different studies and protocols.
After resampling, the images were intensity-clipped to
the range [-10, 80] and subsequently normalized to a
range of [0, 1] before being fed into the network.
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Figure 6: Workflow of the preprocessing pipeline.

3.4. Data Augmentation

Data augmentation techniques are methods used to
artificially increase the variability of a dataset by apply-
ing various transformations to the original data. These
transformations enhance the generalization capabilities
of CNN models by exposing them to a wider range of
variations. In this work, we used random vertical and
horizontal flips, as well as rotations between -5 to 5 de-
grees.

3.5. Deep Learning models

3.5.1. 7- Feature-based FCN model (7-FCN-QEI-Net)
As previously stated, (Dolui et al. (2024)) introduced

a novel algorithm that utilizes three key features com-
monly employed in manual QC of ASL CBF maps to
provide a QEI. While this method achieved high perfor-
mance and set a new benchmark in the field, its capa-
bility is likely constrained by the limited number of fea-
tures. In our research, we build upon that foundational
work by proposing the integration of four additional fea-
tures. These features are as follows:

• SNR: For this feature, we have computed the spa-
tial SNR as the ratio of the GM CBF to the standard
deviation of the signal in CSF CBF.

• Summary Statistics: Several statistics are calcu-
lated from the GM and WM of CBF Maps. They
consist of the mean, the inverse of the standard de-
viation, and 5th and 95th percentiles of kurtosis.

• Shannon Entropy: To measure the ghosting and
blurring induced by head motion, we have com-
puted the Shannon entropy. The inverse of this
measure is used as a feature for our model.

• Spatial Gradients: In ASL CBF maps, there can
be differences in intensities along the three axes

due to possible intensity variation or incorrect ap-
plication of model equations. The variance of the
inverse of CBF map gradients along each spatial
dimension is then used as a feature for our model.

After computing these features, they are combined
with the features from (Dolui et al. (2024)) and used
as input for an FCN architecture (named 7-FCN-QEI-
Net) comprising of seven fully connected layers (FCL)
with [64,256,512,256,64,16,1] neurons in each layer, re-
spectively. In the last layer of this network, a sigmoid
activation function is used to predict a continuous value
constrained between [0,1]. Finally, squared error (SE,
defined in section 3.7 below) was designated as the prin-
cipal metric for this project, and thus, Mean Squared Er-
ror (MSE) was used as the loss function for the training
of this model. An example of this network is presented
in Figure 7.

3.5.2. Deep learning-based regression model (Reg-
QEI-Net)

Next, instead of the manual feature extraction used
in the 7FCN-QEI-Net, we opted for data-driven ap-
proaches using CNNs where the CBF maps were used
as input. These methods do not require a segmented
image of different brain tissues, making them effective
even when a structural image necessary for accurate
segmentation is unavailable. This technique involves
a sophisticated deep-learning based regression model,
which we have named Reg-QEI-Net.

Drawing inspiration from the 3D VGG architecture
delineated by (Simonyan and Zisserman (2014)), we
have incorporated several tailored modifications. The
presented network, illustrated in Figure 7, is structured
into four convolutional blocks, each augmented with
residual connections to mitigate the vanishing gradient
problem (see Figure 8). After the first three blocks, max
pooling layers with a pooling size of 2 are employed for
downsampling each channel. The network concludes
with a series of three FCL, culminating in a final neu-
ron activated by a sigmoid function. For better weight
initialization, we utilized Glorot’s initialization method
(Glorot and Bengio (2010)), which ensures the variance
of activations remains consistent across every layer, pre-
venting the gradient from exploding or vanishing. The
Adam optimization algorithm was used with an initial
learning rate of 0.0001. Moreover, a batch size of 32
samples and a learning rate decay strategy were applied,
with a decay factor of 0.1 and a patience threshold of
15 epochs. Although the training was initially set to
run for 400 epochs, an early stopping mechanism with
a patience parameter of 60 epochs was implemented to
prevent overfitting. Additionally, a dropout rate of 20%
was applied after the fully connected layers to further
prevent overfitting. Finally, similar to the 7FCN-QEI-
Net approach, MSE was used as the loss function for
training this model.
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Figure 7: Schematic of the different deep learning pipelines implemented in this work. A) Feature-Based approach (FCN-QEI-Net) B) Regression
approach (Reg-QEI-Net) C) Multi-Stage Classification approach (MSC-QEI-Net).

3.5.3. A 3D Multi-Stage Classification Model (MSC-
QEI-Net)

As delineated in Section 2.1, current advancements in
deep learning-based regression models typically refor-
mulate the regression problem as a classification task.
This is achieved by discretizing the prediction range
into distinct intervals, each representing a unique label.
While this technique has been shown to enhance the ef-
ficacy of regression methods, it does have a substantial

drawback: the precision is dependent on the number of
intervals (bins) that are defined. An increased number of
bins can yield higher precision, but it also intensifies the
data imbalance among the bins. To address these chal-
lenges, we propose a multi-stage classification method-
ology named MSC-QEI-Net. This novel framework di-
verges from the aforementioned methods, which are fo-
cused on converting a regression task into a classifica-
tion one by dividing the output into bins. Instead, MSC-
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Figure 8: Schematic of the Residual Block used in this study. In the
diagram, rn indicates the sequence number of the block, reflecting
their multiple uses throughout the model.

QEI-Net comprises a series of multi-label classification
networks, each corresponding to an individual rater’s
assessments within the dataset. The network used to
perform this classification is based on the one presented
in Section 3.5.2 with some minor changes. In this ar-
chitecture, since we want to perform multi-label classi-
fication instead of regression, the last FCL contains 4
neurons, corresponding to each of the labels of the clas-
sification. In line with this modification, the softmax
activation function, which is widely used for multi-label
classification tasks, was utilized as the activation func-
tion of this layer. For both optimization and training,
we applied similar hyperparameters to those previously
used in the Reg-QEI-Net model. For the loss function,
however, we opted for Focal Categorical Crossentropy
loss, a prevalent choice in multiclass classification tasks
with imbalanced data.

After training the network, we compute the weighted
average of the prediction by following the formula de-
lineated in Equation 2.

Weighted Average Prediction =
n∑

i=1

(pi · i) (2)

Where:

• n is the number of classes.

• pi is the prediction score for the i-th class.

• i is the class label, ranging from 1 to n.

Then, by aggregating the outputs of these networks
and subsequently normalizing them, the system synthe-
sizes a continuous value within the [0,1] range, repre-
senting the QEI of the image.

3.5.4. A 3D Binary Classification Network (BC-Net)
One of the main objectives of this project is to de-

velop a robust method for discarding unacceptable CBF
maps, which can be framed as a binary classifica-
tion problem instead of assigning a continuous number
defining the quality. Therefore, we also implemented a
3D binary classification approach named BC-Net. To
do so, we have first binarized the expert ratings by fol-
lowing these criteria:

• Unacceptable Quality (0): if any of the raters
gave a rating of 1 to the image.

• Acceptable Quality (1): otherwise.

Furthermore, we used the same parameters and archi-
tecture as the Reg-QEI-Net methodology described in
Section 3.5.2. However, some minor adjustments were
made to optimize the network. The main difference lies
in the ground truth used to train the network. For Reg-
QEI-Net, we used continuous values within the range
[0,1], whereas for BC-QEI-Net, we used binary deci-
sion values explained above. For this reason, we uti-
lized a binay cross-entropy loss function and a sigmoid
activation function in its final FCL. The output of the
BC-Net falls within the range of 0 to 1, representing the
probability that a given sample is of acceptable quality.

3.5.5. Additional Experiments
Various combinations of the previous methods (Reg-

QEI-Net, 7FCN-QEI-Net, and MSC-QEI-Net), that
could potentially result in a better model, were also
studied. BC-Net was not used in the combination since
it represents a binary decision while other outputs a QEI
value. The different combination methods are as fol-
lows:

• Ensemble 1: This is the simplest ensemble
method, which consists of averaging the predic-
tions from each of the networks.

• Ensemble 2: In this method, we calculate the
weighted average of the predictions. To calcu-
late the weights of each method, we have trained
a function that optimizes the weights assigned to
the different models to minimize the MSE between
the ratings and the predictions.

• Ensemble 3: This method utilizes stacking, an en-
semble technique that combines the predictions of
multiple base models to enhance predictive per-
formance. In this approach, the predictions from
the QEI models serve as input features for a meta-
model, which was trained using a 5-Fold CV with
a linear regression algorithm that learns to make
the final prediction by leveraging the strengths and
mitigating the weaknesses of the individual mod-
els.
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To limit the number of ensembles, only the best-
performing models (Reg-QEI-Net and 7FCN-QEI-Net,
see Section 4) were used. After training Ensemble 2
on the validation data, the resulting weights assigned
to Reg-QEI-Net and 7FCN-QEI-Net were 0.663 and
0.337, respectively. These weights were then used to
compute the weighted average of the predictions on the
test data. Similarly, after training the linear regression
models on the validation set, these models were subse-
quently applied to the test set.

3.6. Gradient-weighted Class Activation Mapping
(Grad-CAM) and Heatmap Generation

The QEI developed from the above approaches pro-
vides a summary metric for assessing the overall qual-
ity of the entire image. However, when the quality
is not perfect, the QEI only indicates the presence of
the artifacts in the image, without providing informa-
tion about the location of the artifact. This is important
information in region of interest (ROI) analysis as the
mean CBF in the corresponding ROI can be contami-
nated by artifacts, although the overall CBF map might
pass the QEI threshold, and that can subsequently bias
the analysis. To visualize where the networks are fo-
cusing their attention, or in other words, which region
of the image is contributing most to the QEI, we have
implemented Gradient-weighted Class Activation Map-
ping (Grad-CAM) Selvaraju et al. (2017). Grad-CAM
leverages the gradients flowing into a chosen convolu-
tional layer to generate a localization map, or heatmap,
which highlights the important regions in the input im-
age. This technique provides a visual explanation for
the model’s predictions by identifying the areas in the
brain images that contribute the most to the network’s
decision-making process. For our implementation, we
have utilized the Reg-QEI-Net model to generate the
heatmap. Among all the convolutional layers of the net-
work, we utilized the 5th 3D convolutional layer, which
is located in the third residual block. This decision was
made because this intermediate layer provides a balance
between low-level feature extraction and high-level se-
mantic information, making it ideal for generating de-
tailed and informative heatmaps.

3.7. Algorithm Evaluation Metrics

To assess the performance of the algorithms, we com-
puted the SE between the average manual ratings and
the automated QEI for each CBF map, as defined be-
low.

SEi = (r̂i − rnorm,i)2 (3)

with:

• rnorm: Normalized average rating of the experts.

• r̂i: Predicted rating.

In addition to that, we also reported the Pearson’s
correlation (PC) coefficient between the automated QEI
and the average human rating and compared that to the
correlation between the raters. Finally, dividing the data
as unacceptable and acceptable as described in Section
3.5.4, we computed the receiver operating characteristic
(ROC) curve and the area under the curve (AUC). To es-
tablish a QEI threshold, we have calculated the Youden
Index (YI), as introduced by (Ruopp et al. (2008)). The
YI is a statistical measure that aims to maximize both
sensitivity and specificity. By computing the euclidean
distance between all points of the ROC curve and the
ideal point located at the coordinates [0,1], the YI iden-
tifies the best operating point in the curve. Thereafter,
we computed sensitivity and specificity based on that
threshold.

3.8. Computational resources

The models were implemented using Python ver-
sion 3.10.12 and TensorFlow version 2.16.1. The ex-
periments were conducted on Google Cloud Platform
(GCP) using a 64-bit GNU/Linux operating system
(Ubuntu 22.04.04). The server was equipped with two
Intel Xeon CPUs (2.30GHz), 8 GB of RAM, and a Tesla
T4 GPU with 16 GB of memory, utilizing CUDA 12.4
for the experiments.

4. Results

4.1. Algorithm Evaluation Metrics

Table 2 shows the mean, standard deviation, median,
and IQR of the SE of the validation set (obtained from
the 5-fold CV strategy), while Table 3 shows the same
for the test set. Figure 10(a) and Figure 10(b) present
the violin plots for the same. Table 2 and Table 3 also
list the PC coefficients with the average expert ratings.
Notably, the PC coefficient for the 250 samples used
for training is 0.85 between Dolui and Detre, 0.84 be-
tween Dolui and Wang, and 0.80 between Detre and
Wang. Furthermore, the correlation coefficient between
Dolui and Detre was 0.77 for the test data set. In each
case, the agreement between the raters was lower than
the agreement between the average rating and the auto-
mated methods.

Additionally, Table 2 and Table 3 show the AUC, sen-
sitivity, and specificity as detailed in Section 3.7. Note
that the YI was based on the validation set and hence
has not been presented in the table related to the test
set. Figure 11(a) and Figure 11(b) show the ROC for
the validation and the test sets. As expected, the per-
formance of the test set was slightly worse than the val-
idation set based on all the metrics. Although all the
algorithms provided comparable performance, with the
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Table 2: Comparison of the current state-of-the-art in the field of QEI of ASL CBF Maps (Dolui et al. (2024)) with the different QEI methods
presented in this study using the validation data set.

Method MSE ± std SE Median of SE (IQR) PC Coefficient AUC Sensitivity Specificity YI
Dolui et al. 2024 QEI 0.02160 ± 0.03184 0.00416 (0.01416) 0.943 0.948 0.904 0.922 0.457
7FCN-QEI-Net 0.01646 ± 0.02986 0.01044 (0.02562) 0.903 0.950 0.911 0.922 0.325
Reg-QEI-Net 0.01251 ± 0.02213 0.00611 (0.01556) 0.923 0.958 0.815 0.965 0.461
MSC-QEI-Net 0.02123 ± 0.02579 0.01348 (0.02287) 0.921 0.941 0.822 0.930 0.419
BC-Net - - - 0.940 0.889 0.852 0.614
Ensemble 1 0.01144 ± 0.02008 0.00505 (0.01124) 0.947 0.963 0.889 0.930 0.348
Ensemble 2 0.01112 ± 0.01917 0.00432 (0.01078) 0.949 0.964 0.896 0.913 0.327
Ensemble 3 0.01184 ± 0.02109 0.00439 (0.01134) 0.945 0.961 0.896 0.904 0.335

Table 3: Comparison of the current state-of-the-art in the field of QEI of ASL CBF Maps (Dolui et al. (2024)) with the different QEI methods
presented in this study using the test data set.

Method MSE ± std SE Median of SE (IQR) PC Coefficient AUC Sensitivity Specificity
Dolui et al. 2024 QEI 0.04730 ± 0.05045 0.02945 (0.05103) 0.808 0.896 0.865 0.583
7FCN-QEI-Net 0.02552 ± 0.03811 0.01256 (0.02680) 0.844 0.915 0.757 0.571
Reg-QEI-Net 0.02308 ± 0.02758 0.01464 (0.02414) 0.905 0.950 0.892 0.765
MSC-QEI-Net 0.02776 ± 0.03141 0.02179 (0.03967) 0.877 0.909 0.838 0.625
BC-Net - - - 0.946 0.880 0.705
Ensemble 1 0.01795 ± 0.02002 0.00904 (0.02551) 0.897 0.946 0.892 0.750
Ensemble 2 0.01822 ± 0.01854 0.01126 (0.02616) 0.905 0.946 0.919 0.786
Ensemble 3 0.01814 ± 0.01864 0.01153 (0.02659) 0.905 0.946 0.919 0.800

ensembles performing slightly better than the individ-
ual algorithms, Reg-QEI-Net delivered the best perfor-
mance among the individual approaches in most met-
rics, and its results were also comparable to those of the
ensembles.

Figure 9 shows examples of the prediction using each
method in 4 samples from the test set, one per rating cat-
egory, in which all raters agreed with the same ratings.
Each image also shows the QEI obtained using different
methods, with the first entry showing the manual rat-
ing scaled in the [0,1] range. The best methods in each
case, as determined by a QEI value closest to the man-
ual rating, are shown in green. Finally, in Figure 13,
we show the heatmap of the Reg-QEI-Net model, the
best performer amongst the individual approaches, cor-
responding to various samples, each demonstrating dif-
ferent sources of artifacts.

4.2. QEI across studies
Given that the dataset used in this study includes

data from six different multisite studies, we have an-
alyzed the performance of the presented approaches
across these sources. Figure 12 shows the distribution
of the QEI for each method across the different studies
for both the validation and the test set. Note that the test
set does not encompass all the studies. The figure also
shows the color-coded manual ratings for each method.
As expected, the VCID with its advanced protocol had
the best QEI, while the ADNI ASL, with a relatively
poor protocol and also acquired in older healthy partic-
ipants and patients who are more susceptible to move,
performed worst.

(a)

(b)

Figure 10: Violin plot illustrating the distribution of SE across all the
methods compared in this study for (a) validation and (b) test set.
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Figure 9: Example of ASL CBF Maps with (1) Unacceptable quality (Rating 1) (2) Poor quality (Rating 2) (3) Average Quality (Rating 3) and (4)
Excellent Quality (Rating 4) from the test set. Each example includes the QEI prediction for each of the presented approaches. A,B,C,D,E,F,G,H
correspond to the average ratings of the raters, Dolui et al. (2024), 7FCN-QEI-Net, Reg-QEI-Net, MSC-QEI-Net, Ensemble 1, Ensemble 2, and
Ensemble 3, respectively.

5. Discussion

In this work, we developed several automated QEIs of
ASL CBF maps by leveraging DL techniques. We im-
proved the current state-of-the-art method (Dolui et al.
(2024)) by introducing four new features and using
them to train an FCN. While this method already sur-
passed the performance of (Dolui et al. (2024)), its lim-
itations in the number of features and lack of automation
prompted the exploration of other possibilities. To auto-
mate the feature extraction process, we developed mul-
tiple CNN approaches. These models outperformed the
previous results, demonstrating the superiority of CNNs
in finding better feature representations. Note that these
methods only used the CBF map as input and did not re-

quire a structural image, unlike the 7-FCN-Net method,
which extracts features from different tissue types. We
also considered ensembles of some of the individual ap-
proaches, however, Reg-QEI-Net provided results com-
parable to the ensembled approaches, and is therefore
our recommendation to be used clinically or in research.

5.1. Quality assessment methods
Table 2 and Table 3 present detailed comparisons of

all the proposed approaches against the current state-
of-the-art method (Dolui et al. (2024)) for the valida-
tion and the test sets, respectively. These results show
that all the DL methods agree with the manual ratings.
Specifically, the automated measures correlated better
with the average ratings than the inter-rater correlation.
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While all the raters are highly experienced researchers
at the forefront of ASL MRI, their agreement is not per-
fect, highlighting the inherent difficulty and subjectiv-
ity of this task. Although not tested explicitly as a part
of this study, the intra-rater agreement is also not ex-
pected to be perfect, and the agreement can be lower
with raters new to the field who have limited experience
with ASL CBF maps. The automated rating, being an
objective measure, has the advantage of perfect repro-
ducibility, thus increasing scientific rigor and reliability.
All the DL approaches outperformed the current state-
of-the-art approach (Dolui et al. (2024)). The 7FCN-
QEI-Net model incorporates more features and uses a
better machine learning approach to fit to the training
data than (Dolui et al. (2024)), which uses a relatively
naı̈ve approach to fit each feature separately and com-
bine them subsequently. As mentioned before, the im-
provements are even more pronounced with the CNN-
based approaches, as showcased in Table 2 and Table 3.
The MSC-QEI-Net approach performed slightly worse
than Reg-QEI-Net. While that can be simply due to the
nature of the problem, which inputs and outputs con-
tinuous variables, other aspects could have affected the
performance of the algorithm. For example, we are cur-
rently using a categorical focal cross-entropy loss func-
tion for model training, which helps in dealing with
imbalanced datasets. It might be beneficial to imple-
ment a customized weighted categorical cross-entropy
loss function, where predictions are weighted according
to each rater’s class distribution. This approach might
better address the underrepresented classes and improve
overall performance.

Following the implementation of CNN-based mod-
els, we developed ensemble approaches. The goal of
combining these models is based on their fundamen-
tally different natures. For example, one model con-
sists of a FCN, while the others are CNNs designed
for completely different tasks. As a result, their perfor-
mance and feature vectors vary due to their individual
strengths and weaknesses. This is illustrated in Fig-
ure 12, where the networks exhibit varying levels of
difficulty in predicting different rating values. For in-
stance, in the ADNI dataset, the 7FCN-QEI-Net and
Reg-QEI-Net were less successful at predicting sam-
ples rated as 2 than samples with other ratings. In con-
trast, MSC-QEI-Net did not encounter significant issues
with samples from this rating group. Instead, this net-
work performed less effectively when predicting sam-
ples rated as 1 and 3. The ensemble methods aim to
address this by combining predictions from all mod-
els, creating a single, more robust, and more accurate
final prediction. Although theoretically sound, we only
found a minor improvement in performance with this
approach. However, we expect further improvement
when we train our models with a wider variety of ASL
data from different scanners in our future work (more
details in the Future Work section below).

(a)

(b)

Figure 11: ROC Curve of the different approaches compared in this
study corresponding to the (a) validation and the (b) test set.

5.2. Identifying unacceptable quality CBF Maps

Once the QEI has been obtained from the presented
methods, to exclude unacceptable CBF maps, we have
presented recommendations for cut off values based on
the YI, which optimizes both sensitivity and specificity.
However, in research studies, the preference for higher
sensitivity or higher specificity may vary depending on
the specific task and the type of ASL data that is used.
For example, a research study dealing with poor ASL
data can drastically reduce its sample size using the op-
timal cutoff value. Therefore, it may be beneficial for
such a study to lower the cutoff value to preserve enough
data for analysis. On the other hand, a study dealing
with state-of-the-art ASL data, or having a very large
sample size, can use a higher QEI threshold to preserve
only the ASL data with the best quality. Since the QEI
produces a continuous number between 0 and 1, this
provides the researcher flexibility to choose a threshold
depending on the ASL data.
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(a) (b)

Figure 12: The QEI values across studies for both the (a) validation and the (b) test set.

5.3. Interpreting the heatmaps: artifact detection

The QEI presented in this study represents an esti-
mate of the overall CBF map quality. A mediocre QEI
value indicates that there are artifacts in the image, but
it does not specify their location. The CNN-based QEI
models do not provide a direct explanation for provid-
ing a low or high QEI, as the features are automatically
extracted. A heatmap generated by one of their convo-
lutional layers, however, can provide such information.
This heatmap could be used for region of interest anal-
ysis. For example, for CBF maps with mediocre QEI
values, the heatmaps can be used to create regions of
unreliable CBF maps that can be discarded from statis-
tical analysis. As shown in Figure 13, the higher inten-
sities in the heatmap in artifactual CBF maps coincide
with the region of artifacts. In samples free of artifacts,
the network typically focuses on the GM and WM ar-
eas, where CBF is most relevant and significant. In the
presented artifact-free case, the network has focused on
the mentioned regions but has also shown a special in-
terest in the right occipital lobe, identifying a potential
source of artifact. This sample was originally rated as a
4 (free of artifacts) by two raters and as a 3 by the third
rater. After discussing this case with the two raters who
rated it as a 4, they agreed that the image might include a
small amount of transit artifacts in the highlighted area.
Due to their extensive expertise in ASL, the two raters
knew that the protocol used for this sample was a sin-
gle PLD. This protocol minimizes the transit artifact but
does not eliminate it. Therefore, they concluded that
this image was of very high quality (rating 4) consid-
ering the protocol used in the acquisition. The network
QEI for this sample was 0.9057. This demonstrates the
high correlation between the network’s assessments and
those of the raters, while also showcasing the network’s
potential ability to detect even the smallest artifacts.

5.4. Limitations

This study has several limitations. First, the ASL
data that was used for this study was all acquired with
Siemens scanners. Hence, although the study utilizes
different ASL methods, there can potentially be further
variability due to differences across MRI vendor plat-
forms that were not captured by the models and need
to be studied in the future. Second, the models were
trained with a very limited sample size. This study is the
beginning of a 5-years project funded by the National
Institutes of Health (NIH) and eventually the models
will be trained with a much larger sample size, includ-
ing data obtained with other scanning platforms. Third,
this study did not cover all possible artifacts or disease
types because of limited availability; the dataset will be
expanded in the future phase of the project. Fourth, we
had 3 raters who rated the images on 4 scales, which
led to a limited range of unique numbers when aver-
aged. Some raters expressed that, for certain images,
they were unsure between two rating levels and would
have preferred more options rather than being forced to
choose one that they did not fully agree with. There-
fore, it would be beneficial for this task to extend the
current rating levels to a wider range, which would pro-
vide more options to the raters and a richer representa-
tion of the network’s ground truth, thereby improving
the model’s ability to learn and perform accurately. Fi-
nally, we had only 3 raters who rated the images. In-
corporating additional raters to rate the images can gen-
eralize the QEIs, as different raters might have different
sensitivities to different types of artifacts.

5.5. Future Work

Despite achieving state-of-the-art results, there is po-
tential for further improvement by addressing the limi-
tations mentioned above. First, we will aim to train the
models by using a much larger dataset encompassing
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Figure 13: Example of Reg-QEI-Net heatmap visualizations applied to various samples with different sources of artifacts.

a wider variety of ASL protocols, more scanning plat-
forms (e.g., GE and Philips), a wider type of artifact,
data from patients with different diseases, and images
rated by a greater number of raters. By doing so, the
diversity and relevance of the training data can be in-
creased, leading to improved network performance and
robustness. Second, we will apply the QEI to actual re-
search studies to assess improvements in statistical tests
of group differences. Third, we will use heatmaps to
identify regions of unreliable CBF maps and apply that
to ROI analysis to assess if that improves statistical re-
sults. Lastly, although the current QEI-Net approach
demonstrates high performance in assessing the qual-
ity of the CBF map, it does not give information about
the source of artifacts. To address this, a CNN model
aimed at classifying different sources of artifacts could
be implemented, that can be used in studies to modify or
correct errors in data acquisition protocols. For this ap-
proach, the heatmaps obtained from the QEI-Net archi-
tecture could serve as ROI extractors, enhancing the net-
work’s ability to focus on more meaningful areas of the
brain. This improvement would not only increase the
interpretability of the results but also provide valuable
insights into the types of artifacts affecting the quality
of the maps, ultimately contributing to better diagnostic
outcomes and model transparency.

6. Conclusions

In this study, we designed, optimized, and validated
multiple automated QEIs for ASL-derived CBF maps
using DL techniques. The methods perform comparably

to manual quality assessments and can rapidly provide
an objective quality evaluation that can be used in re-
search studies. These methods can also be incorporated
into clinical and research scanners and provide real-time
feedback to the scanner technicians that can be used to
repeat the scans while the patient or study participant is
still in the scanner. The automated QEI is expected to
facilitate scientific rigor and reproducibility in research
studies.
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Figure 14: Example of the ASL CBF rating tool.

Appendix A: ASL CBF Rating Tool

Here, we detail the functionality and features of the
web-based ASL CBF rating tool developed to simplify
the rating task. This tool is a Python notebook designed
to be used with Google Collaboratory, thereby eliminat-
ing the need to install software or sensitive data on the
user’s computer. When the script is initiated, it automat-
ically downloads the dataset from Dropbox to the user’s
Google Drive. It also generates an Excel file where the
ratings are stored.

Some of the tool’s characteristics are:

• Pause and Resume Capability: The tool allows
for pausing and resuming at any point. It automat-
ically checks the Excel file to determine the last
image rating, ensuring a seamless continuation of
the task.

• Artifact Documentation: As part of an upcoming
study on classifying imaging artifacts, raters are re-
quired to identify and document the sources of any
artifacts observed.

• Intensity Clipping: To modify image contrast, in-
tensity clipping is employed with default parame-
ters set to [-20, 80].

• Comprehensive Visualization: The tool provides
multiple views (axial, sagittal, and coronal) of each
image. To enable the user to rate the image, all
image views must be observed.

• 3D Navigation: A sliding bar is included to navi-
gate through all slices of the 3D images.

Once all images have been rated, the Excel file is au-
tomatically downloaded to the user’s computer. This
tool is licensed freely and is accessible via the following
link: https://github.com/xavibeltranurbano/ASL-CBF-
Rating-Tool

https://github.com/xavibeltranurbano/ASL-CBF-Rating-Tool
https://github.com/xavibeltranurbano/ASL-CBF-Rating-Tool
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