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Target Audience  
Anyone interested in evaluating the quality of Arterial Spin Labeling (ASL) derived cerebral blood flow (CBF) maps, particularly in large research studies. 

Purpose  
Arterial Spin Labeling (ASL) MRI is widely used to quantify regional cerebral blood flow (CBF)1,2 because it is noninvasive and can be acquired as part of a 
multimodal MRI protocol, especially in large-scale research studies. However, ASL has a relatively low signal to noise ratio (SNR) and is prone to artifacts, 
necessitating robust quality control (QC). Manual QC methods are laborious and subject to bias. We previously proposed an automated quality evaluation index3 
(hereafter referred to as QEIbasic), which was based on fitting three pre-determined image derived features on a small set of data obtained with non-background 
suppressed 2D protocols. While QEIbasic showed reliable agreement with manual rating on 
average, there were disagreements in individual cases and a lack of generalization across 
different imaging protocols. Here, we proposed QEI-Net, a deep learning (DL) model to derive 
a QEI (hereafter referred to as QEIDL), which has the potential to provide more generalizable 
results. We further aimed to use QEIDL to identify locations of artifacts in the ASL CBF map. 
Compared to QEIbasic, the QEIDL was trained on a wider variety of scanning protocols and 
leveraged the entire image instead of predetermined features. 

Method 
Dataset: QEIDL provides a numerical value between 0 and 1, where a higher value indicates 
better quality. We utilized N=150 ASL scans acquired with different protocols on Siemens 3T 
scanners. The data distribution is as follows: N=43 with 2D pulsed ASL (PASL), N=50 with 2D 
pseudo-continuous ASL (PCASL), N=28 with PCASL labeling and 3D background suppressed 
(BS) GRASE acquisition, and N=29 with PCASL labeling and 3D BS Stack-of-Spirals 
acquisition. Three raters with extensive experience working with ASL data visually rated each 
dataset on a scale between 0 and 1 following some specific guidelines (Figure 1A). Thereafter 
we divided the data randomly for training and validation (N=120) and testing (N=30). To assess 
the robustness of the method, an independent fourth rater also rated the test set.  Preprocessing: 
The preprocessing pipeline involved calculating CBF from the raw ASL data, registering to the 
MNI space, down-sampling the images to 64x64x64 voxels, intensity clipping to a range of [-
80, 80], and scaling to [-1,1] range. Deep learning method: We used a convolutional neural 
network (CNN) consisting of four convolutional blocks, each with residual connections (Figure 
1B). Max pooling layers with a size of 2 were applied after the first three blocks. The network 
ends with three fully connected layers followed by a sigmoid-activated output neuron. A dropout rate of 
20% was applied after the fully connected layers. Training used the Adam optimizer (initial learning rate 
1e-4) with a batch size of 16, and early stopping (patience of 30 epochs) to prevent overfitting. Mean Squared 
Error (MSE) was used as the loss function of this approach. Artifact location maps were empirically defined 
as the GradCAM4 heatmap from the second convolutional layer of the first convolutional block. Evaluation: 
The model was trained using a 5-fold cross-validation strategy and the model-predictions were averaged to 
provide a more robust prediction on the test set. QEIDL was validated and compared with QEIbasic by 
comparing them with the average manual ratings using Pearson correlation coefficient and the squared errors 
as the performance indices. Next, we binarized the ratings as unacceptable and acceptable using a threshold 
of 0.25 and computed the area under the receiver operating characteristic (ROC-AUC) curve of this 
classification. We also computed the Youden index corresponding to the ROC that can be used as a threshold 
to discard unacceptable quality CBF maps. 

Results 
The correlation between the ratings of raters 1 and 2 was 0.88, between 1 and 3 was 0.80 and between 2 and 
3 was 0.79 (p<0.0001 in each case). The correlation between QEIDL and the average manual ratings (R=0.92) 
was comparable to the inter-rater agreement and was significantly higher (p=0.02) than the correlation 
between QEIbasic and the average manual rating (R=0.81). QEIDL correlation with the fourth rater (R=0.93), 
whose rating was not used to train the model, was comparable to QEIbasic (R=0.88). The squared errors obtained 
with QEIbasic were significantly higher (p=0.002) than those for QEIDL, with mean ± standard deviation values 
of 0.034 ± 0.039 and 0.009 ± 0.011 for the QEIbasic and QEIDL, respectively. The ROC-AUC of QEIDL (0.88) 
was comparable to that of QEIbasic (0.85). Examples of artifactual images, along with the corresponding 
heatmaps highlighting artifact regions, are shown in Figure 2. Additionally, examples where both QEIbasic and 
QEIDL provided similar values and agreed with the manual ratings (A and B), as well as cases where QEIDL 

provided better agreement with the manual ratings than QEIbasic (C and D), are shown in Figure 3. 
 
Discussion and Conclusion 
QEIDL demonstrated superior performance compared to our current automated method3 for predicting the 
quality of ASL CBF maps, achieving significantly lower squared error metrics and stronger correlations with 
expert ratings. While QEIbasic can suggest the presence of artifacts through low QEI values, it does not specify 
the location of these artifacts. In contrast, QEIDL provides additional insights by generating heatmaps from its 
CNN's convolutional layers, offering a visual representation of artifact regions. This capability enhances the 
interpretability of the results and enables targeted region-of-interest (ROI) analysis, allowing for the 
identification and exclusion of unreliable CBF regions from statistical analyses. Future work will focus on 
expanding QEIDL’s training dataset to include ASL scans from a broader range of protocols and scanner 
vendors to improve generalizability.  
 
References 
[1] Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magnetic Resonance in Medicine 
1992;23(1):37-45. [2] Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-
labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the 
European consortium for ASL in dementia. Magnetic Resonance in Medicine 2015;73(1):102-116. [3] Dolui 
S, Wang Z, Wolf RL, et al. Automated Quality Evaluation Index for Arterial Spin Labeling Derived Cerebral 
Blood Flow Maps. Journal of magnetic resonance imaging: JMRI 2024. [4] Selvaraju RR, Cogswell M, Das 
A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based 
Localization. IEEE International Conference on Computer Vision (ICCV). Venice, Italy; 2017. p. 618-626. 

Figure 1: A) Rating strategy guidelines provided to the expert 
raters to annotate the dataset. B) Overview of the QEI-Net 
architecture which consists of different convolutional blocks 
followed by three fully connected layers. The block in the right 
shows the detailed schematic of each convolutional block, which 
utilizes residual connections. cb1-4 denotes the corresponding 
convolutional block numbers.  

 

 
Figure 2: ASL CBF maps contaminated with different 
types of artifacts and the corresponding heatmaps 
generated from the QEI-Net showing the location of 
the artifacts. 

 
Figure 3: Examples of CBF maps with the 
corresponding manual ratings and the automated 
quality evaluation índices derived using QEIbasic 
(Dolui et al.3) and QEIDL (proposed). (A) and (B) 
show examples where both the automated methods 
agreed with manual ratings while (C) and (D) show 
examples where the QEIDL provided better 
agreement than QEIbasic. 


